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PREFACE

The 12th annual conference of the PME is the first meeting
in the history of the International Group for the Psychol-
ogy of Mathematical Eduoation held in an so-
cialist country. The conference takes -place in the old
episcopal city Veszprom, from July 20th to July 25th, 1988.

'There are a number of different ways in which participants
at the conference may make a contribution: research reports,
.post,:r displays, working groups /initiated in 1984/ and .

discussion groups /initiated in 1986/. One session is de-
voted 'to the preparation for the ICME -6 presentations of
the PME. An innovation at this conferenceis that following
each group of papers of similar topics a summary session
will be held to disouss and evaluate the achievements in
the given territory. The discussion sessions will be held
in the following ,topics:

1. Algebra
-2. Rational. numbers"
3. Early numbers
4. Metacognition
5. Teachers' beliefs
.6. Problem solving
7. Computer environments
8. Social factors

We would like to thank Thomas A. Romberg, Claude Comiti,.
Kathleen Hart, Richard Lesh, Tommy Dreyfus and Colette
Laborde for volunteering to chair and introduce these eval-
uation sessions.

87 research papers have been submitted to the conference.
All of them have been evaluated by at least two reviewers
and the final decision on the acceptance of the papers has
been done at a session of the International Program
Committee in Budapest, based on the reports of the re-
viewers. The members of'the International COmmittee.of the
PME and the International. Program Committee have served as
reviewers for the submitted papers.

The order in which the research papers appear in these
two volumes is alphabetic /according to the first author
of the paper/ except for the invited plenary papers that
are taken first. Therefore the order of the papers in-the..
volumes does not necessarily reflect the order of presen-
tation within the meeting itself. Any particular paper can
be located by consulting either the table of contents at
the beginning or the alphabetical list of contributors at
the end. We would like to thank the International Program
Committee, the Looal Organizing Committee and the reviewers
fo their assistance in. the preparation of this conference.



International Program Committee:

Chairman:
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HISTORY AND AIMS OF THE PME GROUP

At eh Second International Congress on Mathematical Edu-
cation /ICME 2, Exeter, 1972/ Professor E. Fischbein of
Tel Aviv University, Israel, instituted a working group
bringing together people working in the area of the
psychology of mathematics education. At ICME 3 /Karlsruhe,
1976/ this group became one of the two groups affiliated
to the International Commission for Mathematical
Instruotion /ICMI/.

According to its Constitution the major goals of the group
are:

1./ to promote international contacts and the exchange of
scientific information in the psychology of mathemat-
ical education,

2./ to promote and stimulate interdisciplinary research
in the aforesaid area with the cooperation of psychol-
ogists, mathematicians and mathematics teachers,

3./ to further a deeper and more correct understanding
of the psychological aspeots of teaching and learning
mathematics and the implications thereof.

.

MEMBERSHIP

1./ Membership is open to persons involved in active
research in furtherance of the Group's aims, of pro-
fessionally interested'in the results of such
research.

2./ Membership is on an annual basis and depends on
payment of the subscription for the current year
/January to December/
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Vice-President:
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INTEOIVEHTMINI OM A MATHEMATICS COURSE AT

THE COLLEGE LEVEL

Linda Qattuso, Cegap du Vieux-Montreal.
Fraynald Lacasse, Universite d'011awa.

Following an Investigation conducted wFth mathophobics students
(Qatuso, Lacasse,1986), we formulated a set of working hypotheses for
mathematics teaching. We briefly describe how we experimented this
peda..1 Ica! approach In a regular class of at the college level. The
ob 1 e was to reconcile affective and cognitive factors.

Not so long ago, a person who aspVed to a respectable career had to learn Latin

and Greek (Toblas,1980; Glablcani,1985). However today, everyone has to do some

mathematics. In Quebec, at the college level, the majority of the students have at least one

compulsory or highly recommended mathematics course in their curriculum; source of

problems for many, cause of repeated drop out for others. Moreover , upon entering

college, these students bring with them at least twelve years of school mathematics. This

experience is sometime positive but also too often negative; as confirmed by the failure

and drop out rate added to the fact that the students choose their curricula to avoid
mathematics (Biouin,1986) . Everywhere in the school environment, mathematics are seen

as a source of problems and we observed a certain declaration of powerlessness In

regard to this question whichs many facets: affective, cognitive and behavioral.

A previous study (Gattuso,Lacasse:1986,1987), convinced us of the

importance of the affective aspect In the learning of mathematics and brought us to

forniulate, for the teaching of mathematics, some working hypothesis abning at alleviating

mathcphobia. However that Is not enough, mathematics courses have substantial

content and students with diffkultles have gaps In their knowledge Mich we must
address. Likewise some forms of behavior are also a source of difficulty in the learning

and the teaching of mathematics (Blouln:1985,1987).

17



- 343

There is no lack of research on the question but bathers coping with all kinds Of

practical constraints do not succeed In Integrating the conclusions of these studies Into

the practice. Too often these deal only with one particular aspect of the problem and In

daily practice many variables Interact To get closer to school reality, it seems important

to have a global view of the question. Conscious of this practical dglcuity, we bled to

articulate and experiment a class intervention model to improve the teaching of
mathematics. In a way, we wanted to link the theory and practice so that teachers can

easily adapt this model and integrate It subsequently Into their own practice.

The landing point
This model was Inspired by earlier results (Oattuso, Lacasse, 1986) where the

problem of mathophobla was shown to be past of daily We. Nimier (1976), Tobias (1978)

and others show the Importance of the affective domain. Then, on the grounds of various

experiments especially In the United States and some of our own, we put together a

supportive environment to reassure some students with a negative background In
mathematics: the Mathophobla worts hops.

In this research, we wanted to see If there were any changes' in the participating

students' &ludas and we wanted to Identity, the reasons for any such changes. We hope

to find a teaching approach that would minimize situations favorable to the appearance of

rnathophobia. The results and the analysis omitted us to explore different factors on

which the teachers could intervene in a regular course of Instruction to state some

hypothesis along those lines and to group them around four dimensions:

1. Affective aspects vs ability to communicate

2. Peer relations vs teaming of mathematics

3. Teacher vs learning of mathematics

4. Pertinence of mathematics.

In short, in addition to listening to the student, the teacher has to allow each

individual the opportunity to express his or her own experience of mathematics. The

students must have the possibility to exchange, to explore to express orally the processes

they use; in order to generate learning. Through his attitudes and his words, the teacher

sets out to destroy the myths surrounding mathematics. He must also find occasions to

supervise Individual learning. He can also show the work Inherent in any mathematical

process. Some historical references and links with daily experiences will place
mathematics In a more humane context To interest and stimulate the students, shiations

and concrete materials have to be developed.

BEST COPY AVAILABLE



- 344 -
This calls for a change of behavior on the part of the teacher and this is not easy:

he has to be motivated. Instead of being the IransmPter of knowledge, the teacher has to

support the learning and the work of the students.

This brought us to foresee a second stage In this research; we felt that these Ideas .

had to be tested in a regular class.

In the same vein, Blouin (1985,1987) fist developed a group hal/rent for
mathophobla at the college level in Quebec, then studied two more easily detectable

phenomena: anxiety and study strategies. Resat showed that those who succeed the

most are the ones that adopt a more appropriate study behavior and there Is also a

significant relation behveen inadequate study behaviors and dysfunctional cognitive

reactions, particularly urrealistic beliefs that facilitate the apparition of anxiety and
resignation.

Personal factors (other thah intellectual apttude) playing a determinant-role In

success in mathematics we grouped according to four dimensions:

I. Realistic perception of the necessary conditions to succeed in mathematics

II.- Knowing and using adequate working methods

III. See oneself as able to do what is needed to succeed

NA sufficlert level of motivation (or Irnportince attributed to professional

success)

After Identifying these differents points, Blouln suggest paths of Intervention to

undo some erroneousbeiiefs and perm; the development of adequate working behaviors

by means of teacher interventions focussing on these points.

In the Unted States (Sadler et Whimbey:1985), a new experimental. approach

seeks to tnprove thinking through a holistic approach giving a large place to

communication in improving global intellectual operations. t emphasize the fact that

learning is an active process and that learners have to participate In the knowledge
acquiring process. Six principles support this approach.

1.Teach atudents to learn In an active way.

2. The students must articulate his thought

3. Promote intuitive comprehension.

4.Organize the course In a sequential way.

5. Motivate the learners.

6.Establish a social climate favorable to learning.

Remarkable progress' In intellectual development, In addition to an increase lh

motivation and in knowledge, especially in mathematics, we observed.

In France, Claudine Blanchard-Laville (1981), was also interested in students'

coping wth a handicap in mathematics, in the context of universPy level course In

19
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statistics.. Time allocated for the course was doubled to allow the pace of the course to be

that of the students. She used small group work and discussions. At the end of each

session, there are some discussion allowing for the verbalization of some affective aspects

of learning. This approach demands an important personal Investment In terms of wort

and partickoation from the student. The content Is also modried In a way to provoke active

thinking and critics, the objective being to he the student overcome his anxiety while

learning to use statistics In an autonomous and constructive way.

Although they Issue from different theoretical fra.mewort, these experiments

converge in many points. A lot of importance is given to communication and particularly to

the affective domain. Crow work Is promoted.

With this In mind we planned three steps to reach the stated objectives.. The first

one was bo be exploratory to permit a more concrete elaboratiOn of our intervention

model. The second one, the experimentation, observation and evaluation of the model in a

regular class. Thirdly, we wanted, following the analysis of the intervention, to draw iv a

realistic pedagogical model that could be use In a regular beaching setting.

Realization

We observed the progress of 2 college groups of 38 studenb3 each. The contents of

the course was In line with the regular program but followed. the hypotheses of the

preceding research. These students followed a remediation course which is offered to

those who do not have the prerequisib3 for collegial level courses. The non-homogenelty

of the ages and acquired knowledge of these go ups complicated the situation. Most of the

student we between 17 and 20 years old.

Very quickly, two major differences in regard to the workshops appeared. First, in

addition to mathophobla, we found a great indifference towards mathematics, and toward

learning in general. Secondly, in a regular class, the gaps In knowledge had a major effect

on the subsequent performance of the students. There had to be remediadon at the same ,
time for the absence of knowledge, the working behavior and , in general, for skills needed
at the process level.

Deficient study beharksfs: included low level of persistence, and hck of rforting
autonomy:Students did not feel responsible for the lack of knowledge so they did not
assume reSpOnsibIliy for their own work. We found an exlraordintuy degree of passivity.

They are experienced students and unfortunately, they have been In contact with aspects
of mathematics that have no meaning for them. Work has to be done on two levet: we
have to make allowances for the affective and behavioral components , but must also
promote profess In knowledge. There was a need to develop stimulating activities, rich In

20



- 346 -

content and to permit the experience of success In mathematics; but first to overcome a
very solidly anchored apathy. A reconciliation between the affective and the cognitive
domains had to be provoked. These two ob)ectives ware pursued the next session with a
group of 25 students.

The course was organized In four blocks.The themes allowed for an exploration of
concepts In a concrete or manipulatory way, followed by activities alined at the
development of technical mastery and set? confidence. Using general themes 'offered
more potential for giving meaning to mathematical activity.

The Initial stage Is irriporbant, it has to be special. So, for the beginning, the
activities aimed to sensitize the students to mathematics wort while coping with the
affective aspects linked to this WO*. We used exploration and problem solving situations
presented as games, puzzles and geometrical constructions. The first meeting was used to
get in touch. After answering an autobiographic questionnaire and an attitude
questionnaire, each person Introduced himlherseff to the others and was able to express
personal feelings on mathematics, on fears, on eXpectations. Moreover, the teacher tied
to learn each students' name.

For the other activities, we had to develop a method consistent with ow
hypotheses, for example: feed-back (discussion In the class on content or the working
method), so the student Is able to discuss his progress in addition to verbalizing himself on
the Impressions felt while working; group work, to develop autonomy and taking charge of
learning in a supportive errdronment.

With respect to basic algebra, it was decided not to dedicate time specially for this
activity because students do not believe In It. Their sense of helplessness is very clear
when you by to submit them to exercises that have already failed. The basic techniques
were Integrated with others activities so as to give meaning to these formal manipulations.

The study of conics, for example, gives support to all kinds of manipulations and
the teacher can draw on the fact that students' Interest is sustained by the inherent interest
of the forms and their possible applications. Consequently, analytic geometry was our
second block. Functions and trigonometry would follow.

Bearing In mind the importance of concrete material In learning, we tried to find
supports for the activities. We had to explore, Invent and invovise. For the first block, the
material used for the workshop was readily available and familiar. For the rest, in addition
to usual instruments (protractor, graphic paper, etc...) cardboard and acetates were used
for exploratory work centered on manipulation.

The procedure was as follows: following wilien protocols the students worked In
groups at a discovery or problem-solving activity. Explanation on the board followed and
was used to bring together the results. In order to be retained, learning of a skill has to be
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reinforced. The arrangement of the class gradually changed and the pace was that of the

students. The teacher continually moved around in the class to observe the', students' work,

to give support or to refocus activities where needed. This way, the student was able to
dominate the situation and to assume responsiblitty for his own progress. Every task was
presented so the student could give meaning to the concepts he constructed. These
situations provided the occasion for the student to experience real success in mathematics

and for this, It is necessary not to oversimpltiy the problems Cl have D., but It was easy...°)

The autobiographic questionnafre and the attitude questionnaire (completed at the
beginning and at the end of the course) gave us some information, but the main
information was derived from the teacher's log book and in the etude nts' interview. The

analysis is In progress. But tt is arreaciy possble to say that the. experiment Is encouraging

and prompts us to go on. On the studenti' part, we observed some remarkable progress

They found out what a mathematical activity could be, they succeeded In giving a
meaning to what they were doing. The Importance of the answer declined, working on the

process was emphasized. Even If the questionnaire showed that the students still did not

link mathematics to daily occvations, they stopped asking what they were for because
they foUnd a certain interest and sometimes even pleasure in, this activity. In spite of some

stress inevitably connected with any innovation, for example, negative reactions from the

students, pressure from the curriculum, the teacher was able to Implement this approach

which proved highly rewarding. Some students came up with some new problems by
themselves, others redid homework already marked, new questions were asked. In this

context the class atmosphere, was relaxed; at first glance, there could appear to be
confusion but the activity was Intense and students frequently continued on with their work
beyond the end of the end of the period.

. This experimertallowed us -to. Implementzttils 'approach aimed at reconciling
cognitive and,affect4 factors In order to 'create. an enriching mathematical environment.

The data analysts will perrii it us tO;see which of Our ob}ectIveS were really reached; as

well as to reveal the problems of transferability: Next, the'retilic:ition-of this experiment will

allow us to produce an improved model adaptable to the regular classroom
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THE EDUCATION OF TALENTED CHILDREN

Ferenc Ge'zwein
National Centre for Educational

Technology/Hungary

In recent years we have heard more and more abou't the education

of talented children. It is usually said that the talent must be given

an opportunity to develop in school, and the tendency to equalise all

children must be changed.

Although I have not been working in a school for several years, I

would like to share with you some of my experiences from the time I

was a teacher, about the education of talented children, and mark out

some ideas and difficulties.

At one time educational statistics only listed the number of

pupils who foiled at the end of the year, the good ones did not deserve

this, let alone the very best. Schools were reprimanded if failures

occured in a large number, schools and teachers who tried to foster

talents were not adequately appreciated. The schools which were good

at taking care of their talented pupils were followed with at least

much doubt and suspicion, lack of understanding. as recognition. Here

I am thinking about schools which produced above average study results

for a number of years, whose students won at school competitions in

large numbers, and whose students were accepted to higher education

very often. These achievements were not.highly appreciated but the

school was given the nickname of a "racing stable". Morover they were

called "distributors of knowledge", "teachers' school", "teaching

material centered", "school with an aristocratic concept of quality".

As if the distribution of knowledge, teaching the material was not

the task of the school, but some source of trouble.. This kind of

thinking end the resulting action is not lacking something, but it

considers the undoubtedly important things unimportant, i.e.'the

development of talent, skills, knowledge, systematic learning in

general and its special methods, although it is evident that without

these the school cannot reach its targets.

BEST COPY AVM iLABLE 2 4



- 35o -

Special Classes

In reaching these aims special methods and specialised schools

and classes play an important role among others, these are very

varied all over the world and in Hungary, too.

In Hungary such specialisai units were the so called "small"

special mathematics classes in secondary grammar schools which were

later reorganised as mathematics specialisations.. The number of these

classes was fairly large, so a large number of pupils had the oppor-

tunity of learning mathematics in more hours per week than the average.

Special mathematics classes have been organised since 1962, for pupils

with a special interest in mathematics. They have nearly 10 classes

of mathematics per week. There are such classes in five grammar

schools, one each year, and pupils are accepted to them after a

successful entrance examination.

Special units within a school, like a special class can be a

successful method in the education of children with a gift for

mathematics, as facts have proved it, and this is not the same as the

well known "school of the excellent", much rather this is one of the

criteria of an "excellent school". These two are not only different

in their name but they are very different in their principle. In the

excellent school excellent teachers work, and educate excellent pupils

in different organisational solutions.

Some have an aversion to special classes in schools. They might

suppose that only extremely talented children can attend these

classes, who might become "one sided" mathematicians. But on the

contrary, pupils in these classes like to learn other subjects, too,

what' s more, they do it on a higher level than the average. It is an

honour and a pleasure for the teacher if he can teach any subject in

one of these classes. A large number of these pupils later became very

good doctors, economists, engineers, more rarely specialists in the

liberal arts. They could become good professionals, among others

because in the secondary school they had the opportunity to have an in-

depth knowledge in at least one discipline, which is one of the

important criteria of developing talent. On the other hand it was
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also advantageous that neither the teacher nor the pupils looked

upon any other subject as unimportant beside mathematics. In these

classes pupils not only developed their mental capacities. They

managed to reach a harmony between the mind and the soul. They were

less likely to merely fulfil instructions like those whose mental

capacities were poorer. They could qualify as excellent not only

because of their quick mind, but also because of their behaviour,

feeling of responsibility and their work in general. They never

stopped short before the goal, i.e. they were characterised by higher

morale, more responsibility, general culture, and the ability to

penetrate deeper into the intricacies of a profession. This experience

proves that the education of talented children in special school groups

does not supress the formation of a manysided personality. This is

proved on the one hand by the career of pupils from these classes, and

on the other, by the experience, that good teaching does not only

develop the mind, but the feelings and the will as well. All goog

teaching is education at the same time, and learning means education

of oneself, too. It is proved by many examples that talent and will,

talent and strong character put up with each other fairly well in a

person, even if they are not always present at the same time and to

the same extent. Talented People are not lacking in strong will in the

majority of cases, on the contrary they wish to be more active and

useful. Talented people can face conflicts and their capability of

resistance is better than the average.

All this might suggest, that once we have a large enough number

of specialised classes, all our difficulties in developing talent will

be over. We only want to say that specialised classes, not.only the

above mentioned ones, can be one means in the realisation Hof the aims

of the school, in the field of educating talented children as well.

Competitions in mathematics

One of the fields of the realisation of talent might be competitions

in mathematics on different levels.
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I do not think the opinion whichcan be read in Kiizneveles

/1981. 12./, a Hungarian paper on educational policy, leads us into

the desired direction: "The atmosphere of competition may have

undesirable side effects, different forms of co-operation may weaken,

some pupils may be left out from among those who are rewarded or

reinforced:" Such an opinion urges us in on indirect way to accept

the opinion that as competition may be harmful, we should not have

any.. It disregards the fact'that all processes in pedagogy might be

harmful. The advice "Let's not do it because it might be harmful"

ties our hands. The competitive spirit must be strengthened at school

the opportunity to. participation must be given to the best, the middling

and the weak ones as well. Competition may also be a means of developing

one's talent, it may help-the pupils use their abilities to the optimum.'

Good competitive spirit and practice in competition may be a driving

force. Care must be taken not to do this wrongly, either. It must be

taken into consideration that fear of the competition, prohibiting

competition may cuuse difficulties right opposite to the ones mentioned

above. There is one type of fear, that the weaker ones will not receive

any recognition, but there is another one, that the very best will not

get the recognition which they would deserve in the competitions. Good

competition must be a part.of the.everyday life of the.school.

The Ed.tvds competitions have been organised in Hungary-since 1894,

every autumn those who were to pass the final exam in secondary school

were given the opportunity to show their knowledge in a competition. '

The best two pOperswere awarded 100 and 50 gold crowns respectively,

and they were published in the paper of the Society. Many mathematicians

to become famous later had their first scholarly success here. These

competitions were trials of talent.as well. Not all talented pupils

took part in the'compeiition, but it was proved that those who won were

talented. The competition was trustworthly because it built on ca

relatively small amount of mathematical knowledge, it tested rather the

may of thinking, the richness of ideas, the adaptability of the competitor.

It is.important to know that those who entered, kept preparing for
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years for this prestigious competition. There is no lower age limitset

for the competitors. It has happened several times, that a young person

won. In the preparation valuable help was given by "101a6piskolai Mo-

tematikai Lapok" /Mathematics Paper for Secondary Schools!, started

by Daniel Arany in 1894, too, and the Competition Problems in Mathematics,

which contained the problems and elegant solutions of the firs.L32

competitions as well as valuable notes. From 1949 on this went on under

the name of "KUrschak ..16zsef pupils' competition in mathematics".

The book "Competition Problems in Mathematics has been reissued

several times since, it is a valuable reading for both the interested

pupil and the teacher. The " Arany Daniel pupils' competition" and the

"Secondary School Competition" used all the earlier. favourable experimmes.

Both attracted large numbers of pupils, already in 1962 more than three

thousand entered each. Nowadays the number is eveahigher. The Interna-

tional Student Olympics in Mathematics has been organised for may.years,

too, Hungarian participants have had very good results. It can evident-

ly be put down to the good tratidions in this country, the preparation

is also well planned and high standard, and the participants can be

selected from a wide circle. The highest level competition is the

"Schweitzer Miklos Memorial Competition" first 'of all for university

students, but younger people can also take part as well, sometimes with

success.

The above mentioned Kdz6piskolai Matematikai Lapok widely attracts

several thousand pupils and several hundred teachers, who all read it

regularly. There are problems set in it for several age groups, the

pupils send in the solutions and in the next issue the editors publish

the solution and the points earned by the pupils. The system of giving

points provides a very good method for learning and developing pupils'

skills, and the articles contributed by members of the Hungarian

Academy of Sciences are valuable, too.

Tibor Szele established a very good way of education within a

school in 1950 in Debrecen. He called these "afternoons of mathematics",

and these were higher level than mathematical circles.
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Some aspects of talent development in educational policy and

pedagogy

When talking about the education of talented children we have to

face both aspects of the issue: a complicated problem in social policy

and also one of educational policy.

It is a practical problem that talent and genious are sometimes

used as synonyms, although beside the number of talented people, i.e.

those with an average talent the number of real geniouses is negligible.

It is a fact that there have always been geniouses. Gauss already

solved difficult mathematical problems at the age of three. Ampere

could also calculate at the age of four. Canova was a confectioner's

apprentice when his talent for sculpture was already evident: he

shaped such an excellent lion of butter that he attracted the attention

of a senator in Venice and earned his patronage. Mihaly MUnkocsy also

showed his talent as a painter when painting boxes and the joiner's

apprentice became a world-famous painter. L6Szl6 Lovosz already wrote

good scholarly papers in mathematics when he was in secondary school,

he was a student when he got a scholarly degree, and he was just about

thirty when he was elected a corresponding member of the Hungarian

Academy of Sciences.

Lipat Fej6r was,31 years old in 1911 when he became a full professor

at the university in Budapest. He was 30 when he formulated a basic

thesis in the theory of Fourier lines and thus opened the way to modern

analysis. Rossini the famous composer was a lazy boy, so his father

apprenticed him to a blacksmith. Davy, ore of the pioneers in electronics

did not want to learn either.

Schools must draw no consequences from the above things. Least not

that they can or should try to educate Gausses or Darwins. They should

not think either that the way to the development of talent leads through

failure at school or onesided education. But they should not think

either that if the school misses out on something the talented pupil

will make up for it later anyway.

It is not the geniouses who give us our most trying tasks but the

so called typical talents Geniouses are rare exceptions among people,
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who might be lucky or unlucky, sometimes a blessing, sometimes a

disaster for the society. He always remains an exception, someone

extraordinary. The creative capacity of those with an average talent

is better than the average or it can be developed to be such. They

are able to organise their thoughts and actions better than the

average and they are able to cover one or more fields of universal

life. Talent understood in this way can be found in the majority of

children, and the circumstances /school education first of all in our

case/ might unfold it, leave it latent, or make it waste away depending

on whether the influences are favourable or not, as teenagers are

still changing. So if we apply the adjective "talented" to teenagers

it does not mean a state but rather better possibilities for development

than the.average. That is why the education authorities keep trying

to find theoretical and practical solutions of how to educate talented

children in an institutionalised form, because the task of education

is to promote and urge this development.

Sorry to say schools have not taken into account that different

children have different inclinations and abilities, they set the same

tasks to everybody. Already at the turn of the century the practice

was that a well defined quantity of teaching material had to be taught

in previously decided steps. This has basically remained the same up

to the present time. The school does its job in a prescribed "order",

and the personality of the children can manifest itself only within

this framework. With some exaggeration we could say that the centrally

defined teaching material is not prepared in view of the child to be

taught, but of an age group or of a year in a certain type of school.

The stress is laid on the teaching material itself, the textbooks and
other teaching aids. There are some new measures though: the teaching

material is broken down to basic and additional units, this and

specialisation opens the way to changes, but petrified practices hinder
the quick changes. So far we have not been able to find the infallible

means and methods of how to find and develop talented children, probably
they do not exist. But since school practice cannot do without
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selection and the application of different practices, it must operate

so as,not to lead the. pupil into a dead end, eventually causing tragedy

in a period of his life.

It has become evident also that a single rigid central "set of

orders" does not work. The most important task seems to be to operate

the schools in the framework of an intensification programme as regards

the contents and quantity of the teaching material as well as the

teaching methods. I do not think about setting up a new type of school

when introducing and spreading the theoretical and practical aspects of

this concept. This is a collection of modern pedagogical methods and

teaching materials, which have been part of earlier experiments. Drawing

the conseqyences from earlier. experiences and developing the methods

further we can expect higher activity and productivity in schools, that

the pupils will do more independent work, their creative ability will

grow. Beside presenting knowledge and usual explanations more room will

be freed for individual observation, experimentation so that the pupil

can be more active in acquiring knowledge. It is not the potential

intensity of abilities which is important but the frequency and method

of their utilisation. Talent develops through activity.

Teachers must accept the principle that disciplined school life is

not a mere conformity with rigid regulations, spirit is not the some

as pedantry without ideas, good methods must become common practice.

Those who know our schools from the inside, are aware that although

there are a number of tasks to be done, they do their best for establishin

themselves as creative workshops. This seems to be proved by the fact

also, that the international society measuring achievements of teachers

/IEk/ when measuring such achievements in mathematics and the natural

sciences'in 24 countries of the world, came to Hungary as well, it found

that in the age groups of ten, fourteen and eighteen year-olds the

Hungarian pupils were outstanding. In many comparisons they were ahead of

their age group. If they were not the first, they were among the best./

We should never forget that the person able to create something great

aliiays worked very hard in all walks of life and found the aim and
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meaning of his life in this work. Gorky put it like this: talent is

work. We should never get stuck in the bleak practices of the usual,

but we must renew ourselves lead by stimulating dissatisfaction ad

the wish for'becoming more and we must surmount pleasant repetition

with constantly seeking' for.what is new and better.
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THE DEVELOPMENT OF A MODEL FOR COMPETENCE

IN MATHEMATICAL PROBLEM SOLVING

BASED ON SYSTEMS OF COGNITIVE REPRESENTATION

Gerald A. Goldin

Center for Mathematics, Science, and Computer Education

Rutgers The State University of New Jersey

An overview is provided and theoretical progress reported on the
development of a unified model for competence in mathematical
problem solving. The model is based on five kinds of mature
internal cognitive representational systems: (a) verbal/syntactic;
(b) imagistic; (c) formal notational; (d) heuristic planning and
executive control; and (e) affective. Three stages of construction
are posited: (1) semiotic; (2) structural developmental; and
(3) autonomous. New features described in the paper include
developmental precursors of imagistic representational systems,
and interactions of affective states with heuristic planning con-
figurations. In the present model, the mutual- and self-reference
of systems of representation provide an alternate way to under-
stand what have been called metacognitive processes. Implica-
tions are drawn for the psychology of mathematics education.

COGNITIVE REPRESENTATIONAL SYSTEMS.

In earlier work the author has explored the definition of a representational
system (RS), and proposed a model for problem solving competence based on
systems of cognitive representation. Briefly, an RS consists of primitive
characters or signs somehow embodied, together with rules for forming
permitted configurations of these, and for moving between configurations.
It also includes higher level structures of various kinds. Configurations or
structures in one RS can stand for or syneolize those in another. An RS
can admit emtdywities which are resolved by going outside the system
through symbolization (Goldin, 1987; Kaput, 1983,1985; Palmer,1977).
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Cognitive RS's are constructs. They provide a framework for simulating the
internal processing which takes place when people solve mathematics
problems, playing the role of "higher level languages" in relation to the
possibility of "lower level" descriptions by neural networks. They are
intended to describe competencethe capability of performance--rather
than behavior directly.

Fig. 1 illustrates a narrow, naive model entailing only two RS's--a model
too often adopted in teaching mathematical problem solving. The goal in
this model is for the student to translate the problem directly from its
presented form in words and sentences into the formal mathematical no-
tation of numerals, formulas, and equations; and then to manipulate the
symbols algorithmically. But the educational objectives-- competencies
implicit in a model such as this, are highly inadequate. The translation
process can be achieved in many situations by teaching rote "key word"
recognition ("altogether" means + , "of" means x , etc.), as if a dictionary
procedure were indicated. We regard this as non-insightful problem
solving. The present model (see Fig. 2) incorporates a much more complex
view of what is involved. It is based on five kinds of mature internal
cognitive RS's: verbal/syntactic, imagistic systems, formal notational,
heuristic planning and executive control, and affective.

A yerliel/s,yntactic RS refers to capabilities for processing natural lan-
guage on the level of words and sentences--through dictionary information,
word-word association, parsing of sentences based on grammar and syntax
information, etc. imagistic systems refer to non-verbal, internal configu-
rations representing objects, attributes, relatiork and transformations.
They describe what might loosely be called "semantic" information, and are
needed for the meaningful interpretation of verbal problem statements.
Here dwell such interesting theoretical constructs as "phenomenological
primitives" (diSessa, 1983). The formal notational systems of mathema-
tics are highly structured symbolic RS'snumeration systems, arithmetic
algorithms, algebraic notation, rules for symbol manipulation, etc. Rather
unfortunately, the vast majority of school mathematics today is exclusive-
ly devoted to learning their use. In problem contexts, their structure can
be explored through-state-space analysis (Goldin, 1980). The heuristic
process (HP) is taken as the culminating construct in an RS of heuriStic
planning end executive control. Four dimensions of analysis have been
proposed for examining and comparing HP's: advance planning reasons for
using them, domain-specific ways of applying them, domains to which they
can be applied, and prescriptive criteria for suggesting that they be
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applied (Goldin and Germain, 1983). Finally, an effective system describes
the changing states of feeling that the problem solver experiences--and
utilizes--during problem solving.

STAGES OF CONSTRUCTION

Constructivist researchers argue that knowledge is "constructed" by each
individual, rather than "transmitted" or "communicated" (Cobb and Steffe,
1983; von Glasersfeld, 1987). This metaphor can be given a more detailed
interpretation by regarding the cognitive RS's in the present model as
constructed during three main stages. An inventive semiotic stage incor-
porates the development of new signs and/or configurations, and the initial
acts of symbolization in which these are taken to stand for aspects of a
previously established RS (Piaget, 1969). There follows a period of struc-
tural development for the new RS, driven primarily by structural features
of the previously established system. Last, we enter an autonomous stage ,

during which the new RS "separates" from the old. Alternate symbolic re-
lationships now become possible for the new system, enabling the-transfer
of competencies to new domains.

DEVELOPMENTAL PRECURSORS OF IMAGISTIC SYSTEMS

The above ideas are illustrated by attempting a unified description of the
development in children otimagistic RS's from their precursors. One
possible conceptualization of such development, generally consistent with.
Piagetian cognitive-developmental .theory, is illustrated in Figs. 3 and 4.
Space permits only a brief discussion here. The "brain system" is to be
thought of as representirig inborn human capabilities. It provides a kind of-
template for sensory development, facilitating the construction -- through
sensory-motor feedback, vie the above stages--of an RS called the "sen-
sory interpreter." This system enables the individual to 'Process sense-
'data meaningfully, representing for instance the self-other correspondence
that makes imitation.possible in the child.- It in turn served as the main
template for construction of imagistic. RS's. This takes place. through the
principal input and feedback channels shown, again vie the stages dis-
cussed above. The correspondence with Pieget's broad developmental
stages is indicated. This picture describes what might be called the "bot-
tom up" deVelopment of the imagistic.systems which enter into the model
of Fig. 2. Later, during the autonomous stage of imagistic cognitive RS's,
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their development continues by means of verbal, formal, heuristic, and even
affective pathways--as well as through new object constructs by way of
the channels in the diagram.

AFFECTIVE PATHWAYS

The affect described in the present model is not limited to global attitudes
or personality traits such as degree of independence (cf: McLeod, 1985).
The emphasis rather is on local affect. The changing states of feeling
expressed by solvers during mathematical problem solving serve important
functions, for experts as well as novices. They provide useful information,
facilitate monitoring, and suggest heuristic strategies. Fig. 5 illustrates
two major affective pathways, one favorable and one unfavorable, together
with conjectured relationships between the affective states and useful or
counterproductive heuristic configurations.

METACOGNITION VERSUS MUTUAL- AND SELF-REFERENCE

The term metacognition has been used to refer to problem solvers' know-
ledge about their own knowledge states, monitoring of their own cognitive
processes, or belief systems about problem solving or about themselves.
While considerable importance has been ascribed to it in mathematics
education.(e.d. Schoenfeld, 1983, 1985a,b), there remain serious *-

difficulties in trying to distinguish consistently between the cognitive and
the metacognitive. If we acknowledge "objects" to be cognitive constructs,
then everyday cognitions about objects are already metacognitive. Tables
and chairs, words and sentences, numbers, mathematical formulas and
equations,ideas, feelings, and heuristic plans are all commonly treated
(and manipulated) as "objects." A heuristic-process such as "trial and
error" can be applied to "try" objects, numbers, or heuristic plans, and to
evaluate the outcomes of the trials.

The present model rejects the cognitive /metacognitive distinction as such,
but conjectures explicitly that the' some cognitive processes can be
applied to various domains, consisting of configurations from various RS's.
Cognitive RS's are thus mutually referential - -as when equations (formal
notational configurations) serve as "objects" and are manipulated imagis-
tically. They are also self-referential as when words and sentences
refer to words and sentences, or heuristic processes act on domains of
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heuristic processes. This conceptualization allows us to avoid the infinite
regress of levels of executive control, and to describe within the model a
major complexity of human problem solving.

IMPLICATIONS FOR THE PSYCHOLOGY OF MATHEMATICS EDUCATION

The model suggests a psychological basis for establishing objectives in
teaching mathematical problem solving, and provides a unifying way to in-
terpret concept and schema development, so that these encompass rela-
tionships among the indicated cognitive RS's. It thus carries further a line
of thinking explored by Lesh (1981) and Lesh, Landau and Hamilton (1983).
Our goal should be to develop i/7 students all of the internal systems of
representation. as well as the processes that enable these systems to
reference themselves end each other. Emphasis on formal notational
systems only may lead to rote algorithmic learning; exclusive reliance on
verbal/syntactic processing may limit students to vocabulary learning and
rote translation methods. We must focus explicitly on the development of
imagistic systems (including mathematical visualization, kinesthetic
encoding, etc.), the executive system (including heuristic processes in all
their aspects), and the affective system (including its productive use in
monitoring and in the evocation of heuristics). Structured clinical
interview research methods are well-suited for investigations based on the
present model, which can provide a theoretical framework from which to
proceed in aiming for replicability and comparability among such studies.
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PILOT WORK ON SECONDARY LEVEL

Mgria Halmos
Hungarian National Centre, for Educational Technology.(00K)

ABSTRACT

A new mathematical educational project on primary level
was initiated in Hungary in 1962 according to the
conception of Tams Varga.A new programme based on this
project has been prepared which was implemented during
the seventies and early eighties. Pilot work started on
secondary level during the early seventies. The objectives
of mathematical education in'the new primary programme and
in the secondary experimental programme are essentially
the same. The secondary experiment is projected and guided
by the members of the Mathematical-Didactical Research. Group
of OOK (Hungarian National Centre for Educational Techlogy).
The most important educational objectives of the experiment
are the following: learning should begin at a very concrete
starting point and then lead children towards abstraction;
learn mathematics through the discovering of mathematics;
make mathematics liked by children.

1. INTRODUCTION

I could not start more adequately than by quoting Tangs Varga

about the main motivation of the changing of the Hungarian mathe-

matical education:

"...Any normal child is able to comprehend and learn every piece

of mathematics which is now taught,at school, as well as a good

deal more, to enable him to fit in with the requirements of

modern trends..."

A new mathematical educational project on primary level was

initiated in Hungary in 1962 according to the conception of TamSs

Varga. A new programme based on this project has been prepared which

was implemented during the seventies and early eighties.

41



- 367 -

Pilot work extending this project to the secondary level has started

during the early seventies. The secondary programme was based earlier on

the traditional primary programme. A secondary experiment has been started

in 1976, which is based on the new primary mathematical programme, modern

both in method and in content. The objectives of mathematical education

in the new primary programme and in the secondary experimental programme

are essentially the same. Differences result from the fact that we face

a different age-group.

The secondary experiment is projected and guided by the members

of the Mathematical-Didactical Research Group of 00K (Hungarian

National Centre for Educational Technology). This research group was

directed by Professor Jgnos SurAnyi for more than two decades.

This secondary experiment will be discussed in this report.

The experiment is running in 40 claMses with 10-10 classes in

the same age-group (age 14 -18) at present. The experiments begin in the

first classes of secondary school (age 14) continued in each case with

the classes of higher grades up to maturity (age 18). Materials are

prepared both for children and teachers, and these are changed on the

basis of classroom-experiences. These changes are not finalized yet.

2.EDUCATIONAL OBJECTIVES AND. PRINCIPLES OF THE EXPERIMENT

a.The abstraction process

The process of abstraction is one for which considerable time must

be allowed. Children do not abstract automatically. Mathematics is very

abstract. This is in fact its greatest strength, since it means, in

effect, that it condenses into itself the essence of a great number of

concrete phenomena. In order to get this very abstract structure we have

to begin at a very concrete starting point and then lead children towards

abstraction.

b.Discovery

"The best way to learn anything is to discover it by yourself",

wrote George Polya. This is very true in mathematical learning. This

means that there is hardly anything more important, than leading the

children to meet mathematics in status nascendi or to make them

42rediscover it.
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When teaching is going this way, learning is realised through

problem solving. Definitions, axioms, notations, terminology are also

very important in mathematics. Children learn independently to name and

symbolize mathematical entities. These ones are also discoverable.

c.Motivation

Learning is based on intrinsic rather than extrinsic motivation.

This simply means to try as far as poSsible to build on children's

interest: to provide children with challenging problems which are

neither too difficult nor too easy for them; to make children get used

to checking and correcting their own work (something is. correct not

because the teacher has said but because it has been checked and found

correct).

Consequently, it is important to consider the individual differences

between children. This is, of course, intimately connected with

the principle "to discover by yourself". The children that are able

to do more will produce more, both in quantity and quality. Another

consequence.is that nobody should be ashamed of having committed a

mathematical error. To have committed an error gives an opportunity for

discussion and could never be used by a teacher for making a child look

small.

The greatest intrinsic reward for children is to get on happily

with the topic in hand. That is connected with the very important

objective, to make mathematics liked by children. The mechanical tedious

training should be avoided for that purpose.The training is to be embedded

into challenging activities.

d.Mathematics as a tool; mathematics as a whole; mathematics as an art.

In learning mathematics application is the best starting point. When

it is possible it is worth taking problems from other (nonmathematical)

subjects. Problems drawn upon real-life situations may help to develop.

in children a feeling for order of magnitude and reasonable approximation,

skill in estimation or in rapid rough calculation of numerical results.

The structure of the curriculum aims at removing the fragmentation

of the various mathematical disciplines: arithmetics, algebra, geometry,

and function are integrated in our experimental mathematical documents;

all interlacing.with 4c3 other.



369

Many children leave school without ever.having felt the beauty of

mathematics. To make children realise the beauty of mathematics the first

step is to remove the fear and anxiety from mathematics. To realise and

enjoy the beauty of mathematics children must be given sufficent

opportunity for free, creative activity.

3. EXPERIMENTAL DOCUMENTS

The children use the following books:

1. grade (age 14-15, 4 lessons per week)

Miscellaneous problems

Arithmetics

Algebra I.

Geometry I.

Functions

Algebra II.

Geometry II.

Combinatorics

2. grade (age 15-16, 4 lessons per week)

Quadratic function

Algebra

Trigonometry I.

Geometry

Trigonometry II.

Combinatorics

3. grade (age 16-17, 3 lessons per week)

Miscellaneous problems

Extension of the concept of power and logarithms

Vectors

Coordinategeometry

4. grade (age 17-18, 3 lessons per week)

Miscellaneous problems

Series

Spatial geometry

Recapitulation

BEST COPY AVAILAPIE
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a.Miscellaneous problems

This kind of books is available for first, third and fourth grades.

These books contain different kinds of not too difficult, yet non-routine

problems.

They usually do not require much more than logical thinking or

some unusual combination of simple knowledge. Also mathematical

recreational problems can be found amongst them. This kind of problems

have a role in helping children to like mathematics. Puzzles can be

excellent starting points for deep ideas in school mathematics.

The miscellaneous problems often throw light to some topics of

elementary mathematics not treated systematically.

They may also be simple special cases of advanced problems usually

discussed in higher mathematics.

Other miscellaneous problems are destined for preparing topics

to be treated in details later on.

b. Recapitulation

This book includes concepts, theorems and their proofs, problems

and their solutions selecting some topics (sets, arithmetics, algebra,

functions, combinatorics) of the 4 years.

c. The structure of textbooks

The textbooks consist of problemseries, which allow the children

to discover the subject-matter, then summary of the subject, after that

further problems and interesting parts from books and articles concerning

the discussed themes.

d. The guides for teachers

The textbooks for children may be discussed according to the order

of the listing above, but it is only one possibility. Other possibilities

are given in the guides for teachers.

The guides for teachers includes also the solutions of the problems

contained in the textbooks and here is listed the problems to be used

for the gifted

BEST COPY AVAILABLE
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ON THE TEXTUAL AND THE SEMANTIC STRUCTURE OF MAPPING RULE

AND MULTIPLICATIVE COMPARE PROBLEMS
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In this paper we will (a) compare the textual and the semantic structures of
division problems in the Mapping Rule category to those in the Multiplicative
Compare category, (b) show how different interpretations of the string
underlying the textual structure of Multiplicative Compare problems -- the
phrase "as many as" -- influence the representation of division problems as
partitive or quotitive, and (c) suggest an instrument to answer empirically
the question of what implicit interpretation students give to the phrase "as
many as."

In analyzing the.propositional structure of multiplicative problems, Nesher (1987)

identified and formulated three different categories: Mapping Rule, Multiplicative Compare, and

Cartesian Multiplication. In this paper we are interested in the textual and the semantic

structures of the first two categories.

Mapping Rule, In a Mapping Rule problem there is a mapping rule between the two

measure spaces from which the units are derived. For example, in the multiplication (M)

problem:

MI. There are 5 shelves of books in Dan's room.

Dan put 8 books on each shelf.

How many books are there in his room?

This research was supported in part by the National Science Foundation under grant No. 44-22968..

Any minions, findings, and conclusions. expressed are those of the authors and do not necessarily reflect

the views of National Science Foundation.
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the phrase "8 books on each shelf" is the mapping rule between the measure spaces "shelves",and

"books.

Nesher characterized the two types of division problems In the Mapping-Rule category,

partitive and quotitive, as follows. A division problem is partitive if the question is about the

string which was the mapping rule in the corresponding multiplication problem, such as in the

following division (0) problem:

02. There were 40 books in the room, and

5 shelves.

How many books are there on each shelf?

A division problem, is quotitive if the question is about the string which was an existential

description in the corresponding multiplication problem, such as in the following division

problem:

03. There were 40 books in the room.

8 books on each shelf.

How many shelves were there?

Multiplicative Compare. A Multiplicative Compare problem is one in which a .

one-directional-scalar-funciton is used to compare between two problem quantities. For

example, in the multiplication Voblem

M4. Dan has 12 marbles.

Ruth has 6 times as many marbles as Dan has.

How many marbles does Ruth have?"

the phrase "Ruth has 4 times as many marbles as Dan has" is the one-directional-scalar-function

between the quantities representing Don's set of marbles and Ruth's set of marbles.

Nesher did not characterize partitive and quotitive problems in the Multiplicative

Compare category. However, according to Greer's (1985) extension of the type of division

problems, a problem is partitive or quotitive, respectively, according to whether the divisor is

conceived of as the multiplier or as the multiplicand in the corresponding multiplication problem.

If we hold that the numbers 6 and 12 in Problem M4 are the divisor and the multiplicand,

respectively, then based on Greer's extension, the following division problems (D5 and 05) would

be partitive and quotitive, respectively. (As can be seen from Problems M1, D2, and D3, Greer's

extension agrees with Nesher's characterization of Mapping Rule division problems.)

D5. Ruth has 72 marbles.

- Ruth has 6 times as many marbles as Dan has.

BEST COPY AVAILABLE
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How many marbles does Dan have?"

D6. Ruth has 72 marbles.

Dan has 12 marbles.

How many times as many as Dan does Ruth have?

Using Nether propositional terminology, we get that a division problem from the

Multiplicative Compare category is partitive if the question is on the string which was an

existential description in the corresponding multiplication problem (see, for example, division

problems D5 with respect to the multiplication problem M4). similarly, a division problem is

quotitive if the question is about the string which was the one- directional-scalar-function in the

corresponding multiplication problem (see. for example, Problems D6 with respect to Problem

M4).

We will see now that these definitions of partitive and quotitive Multiplicative Compare

problems are based on a specific interpretation of the phrase "as many as;" a different

interpretation of this phrase would lead to opposite definitions. Consider, for example, Problem

D5. The phrase "Ruth has 6 times as many marbles as Dan has" can be interpreted as a

unit-rate-per-statement, i.e., for each marble of Dan, there are 6 marbles of Ruth (see Figure

1), or as a lot-per-statement, i.e., for Dan's set of marbles there are 6 sets of marbles of Ruth,

each of which is equivalent to Dan's set (see Figure 21.

Figure 1

Ruth's

Dan's

Figure 2

Ruth's

Den's

49
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If the phrase "es many as" is Interpreted as a unit-rate-per-statement, then Problem D5

would be conceived of as a quotitive and not as a partitive as was indicated earlier. This is because

under this interpretation, to find how many marbles Dan has, one needs to find the number of

times the set of 6 marbles goes into the set of 72 marbles (see Figure 1). On the other hand, if the

phrase "as many as" is interpreted as a lot-per-statement, the problem situation would suggest

that (a) there is one set of marbles belongs to Dan, which against it there are 6 sets of marbles .

belong to Ruth, each of which is equiv-alent to Dan's set, end (b) Ruth has 72 marbles. (See Figure

2.) Thus, to find how many marbles Dan has, one needs to find the number of marbles in each

Ruth's set. This situation suggests that Problem D5 is of partitive division type.

Applying the same analysis to Problem D6, it will be found that the problem is conceived

of as partitive or quotitive according to if the phrase "as many as" is interpreted as a

lot-per-statement or as a unit-rate-per-statement, respectively.

RELATIONSHIPS BETWEEN PROBLEM STRUCTURES

We indicate that under the lot-per-statement-interpretation, partitive (quOtitive)

Mapping Rule problems have the same textual structure as the quotitive (partitive) Multiplicative

Compare problems (see Figure 3): The question in a Mapping Rule partitive problem and in a

Multiplicative Compare wet/live problem is about the string which was en association ( i.e.,

either as a mapping rule or as a one-directional scalar- function) between two measure spaces in

the corresponding multiplication problem, similarly, the question in the Mapping Rule quatitive

problem and in the Multiplicative Compare partitive problem is about the string which was an

existential description in the corresponding multiplication problem. On the other hand, under the

unit-rate-per-statement interpretation, the Mapping Rule partitive and quotitive problems are

of the same structure as of the Multiplicative Compare partitive and quotitive problems,

respectively (see Figure 3).

BEST COPY AVAILABLE

50



- 376 -
Figure 3

ED - Existential Description Ass - Association

Mining Rule

Multiplication Partitive qmoSitie

- 5 shelves of books (ED) - 40 books (ED) - 40 books (ED)
- 9 books on each (Ass) - 5 shelves (ED) - 9 books on each (Ass)
- How many books? (ED) - How many on each (Ass) - How many shelves (ED)

Multiplicative Compare
(Lot-per-statement Interpretation)

Multiplication geotitime Partitive
- Dan has 12 marbles (ED) - Ruth has 72 marbles (ED)
- Ruth has 6 times as many - Dan has 12 marbles (ED)

marbles as Dan has (Ass) - How many times as many as
- How many marbles Dan does Ruth have? (Ass)

does Ruth have? (ED)

Multiplicative Compare
(Unit- rate- per - statement interpretation)

- Ruth has 72 marbles (ED)
- Ruth has 6 times as many

marbles as Dan has (Ass)
- How many marbles

does Dan have? (ED)

Multiplication 'Partitive smotitivo

- Dan has 12 marbles (ED) - Ruth has 72 marbles (ED)
- Rum has 6 ernes as many - Dan has 12 marbles (ED)

marbles as Dan has (Ass) - How many times as many as
- How many marbles Dan does Ruth have? (Ass)

does Ruth have? (ED)

AN EXPERIMENT

- Ruth has 72 marbles (ED)
- Ruth has 6 times as many

marbles as Dan has (Ass)
- How many marbles

does Dan have? (ED)

We will suggest now an experiment to answer empirically the question of whether the

phrase "as many as" in division problems from the Multiplicative Compare category is interpreted

implicitly by students as a unit-rate-per-statement or as a lot-per-statement. This experiment

is part of an instrument we have developed to assess the inservice teachers' knowledge of
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multiplicative structures, which is under way and will be reported at Post Harel and Behr (in

preparation). Items from this experiment include the following example. We gave students two

variations of a division problem. In the first variation the problem quantities violate the intuitive

partitive model but conform with the intuitive quotitive model (Fischbein, Deri, Nello, and

Marino, 1985). This variation can be achieved, for example, by taking the divisor to be a

fractional number and smaller than the dividend. The second variation is a problem in which the

quantities conforms with the two intuitive models, which can be achieved, for example, by taking

the divisor a whole number and smaller than the dividend. Examples of these variations are

Problems D7 and D8, respectively,

D7. Steve has 72 pizzas.

Steve has 6. 3 times as many pizzas as John.

How many pizzas does John have?

D6. Steve has 72 pizzas.

Steve has 6 times as many pizzai as John.

How many pizzas does John have?

Fischbein et al. ( 1985) and others (Greer, 1985; Greer and Mangan, 1984; Mangan,

1986; Tirosh, Graeber, and Glover 1986; Harel, Post, and Behr, in preparation) found that

children and teachers as well select a non-correct operation when they are presented with

problems including numbers that conflict with the rules of the primitive models; students'

performance on problems which conforms with the intuitive models is relatively high. Thus, if

the phrase "es many as" is interpreted by the students as a lot-per-statement, then, as has been

shown earlier, the two variations (D7 and D8) would be represented as partitive division

problems. Consequently, it would be expected that the students will perform better on the second

variation (Problem D8), which does not violate the partitive model, than on the first variation

( Problem D7), which does violates the partitive model. On the other hand, if the problem is

interpreted as a unit-rate-per-statement, then the problem ( In the two variations) would be

represented as a quotitive division. Consequently, it would be expected that the students'

performance would be equally high on the two variations, since both problems do not violate the

intuitive quotitive models.
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CONCLUSIONS

From this analysis we see that the interpretation of the phrase "as many as affect the

semantic structure of Multiplicative Compare division problems. The pedagogical value of this

analysis is that it points out the need to enrich the cultural and educational experiences which

underlie children's understanding of Multiplicative Compare division problems. Students should

be able to move from one interpretation to another in order to construct the problem

representation that most incorporates with their knowledge. air analysis of Missing Value

Proportion Problems (Harel and Behr, 1988) and research by many others (e.g., Davis, 1984;

Greene, 1983; Behr, Lest, and Post, 1986) demonstrate the importance of the use of different

problem representations during the course of a problem solution.

The types of the quantities, discrete or continuous, involved In the problem seem to have

an impact on the interpretation of the phrase "as many as," and consequently on the semantic

interpretation of the problem as quotitive or partitive. As was shown earlier, an "es many as"

phrase which involves discrete quantities can be interpreted either as a unit-rate-per-statement

or as a lot-per-statement. On the other hand, if the quantities are continuous, it is more likely

that the phrase "as many as" would be interpreted as a lot-per-statement, such as in the phrase "a

mountain range is 124 times as long as a mural of it." However, this hypothesis and the analysis

described in this paper needs further considerations.
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FORGING THE LINK BETWEEN PRACTICAL
AND FORMAL MATHEMATICS
K. M. Hart and A. Sinkinson

Nuffield Secondary Mathematics

The research project 'Children's Mathematical Frameworks'
monitored the transition from the use of concrete materials to the
mathematical formalisation which was the synthesis of these
practical experiences. The data were collected from interviews
with children and classroom observations of teachers and pupils.
The children tended to say that there was little or no connection
between the two types of mathematical experience. The Nuffield
project uses the same methodology as CMF but attempts to
compare results and children's opinions when a) the 'normal'
transition is made and b) a distinctive, different type of
experience is provided to establish a link between the concrete
work and formalisation.

The research project 'Children's Mathematical. Frameworks' (CMF) was

designed to monitor the transition from the use of practical/concrete
material to formal/symbolic mathematic's. The sample was composed of
British children aged between 8 and 13 years. For at least 20 years the
training of teachers-in Britain has been influenced by the theories of Piaget
and more significantly by those who sought to implement these theories in
.suggestions for clastroom practice. Thus teachers have come to believe
that the most beneficial method of teaching mathematics to children
deemed to beat the concrete operational level of cognitive development, is
through the use of concrete materials (manipulatives). This is often
extended to 'mathematics should be taught through practical work'. The
mathematics taught in the secondary school, howeyer, assumes the use of

symbols and generalisations which constitute a more formal system. CMF
was only concerned with the use of materials in a series of experiences
carefully structured by the teacher so that they culminated in a
generalisation, formula or rule. This formalisation' was supposed to be the
statement or symbolisation of the synthesis of the experiences. For
example the formula for the area of a rectangle could be regarded as coming
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naturally from many activities which involved using tiles, counting squares,
drawing shapes to encompass a given number of squares etc.

The methodology of CMF involved the interviewing of some of the children
being taught in this way (i) before the start of teaching, (ii) just before the
lesSon in which the 'formalisation was verbalised, (iii) immediately after
this lesson and (iv) three months later. The 'formalisation' lesson(s) were
observed and tape-recorded by the researchers. The results, previously
reported at PME, showed generally that the pupils sew no connection

between the two types of work they had experienced, to quote 'Sums is

sums and bricks is bricks'. Additionally teachers made little effort to .

describe why the transition was being made nor to emphasise the
generalisability of the new 'formalisation'. They might appeal to the time
saved by using the new method or to the inconvenience of carrying bricks in
order to perform mathematical calculations but generally, although the
pupils were told they would understand better if they used materials, the

link to a final formula was not stressed.

In September 1987, we were funded by Nuffield for one year to continue and
extend this work. The hypothesis for the new research is that the gap
between the use of concrete materials and the formalisation (which is often
written symbolically) is very great and that children would benefit from a
third type of experience, essentially different from both but acting as a
bridge between them. This bridge activity might be discussion, child
verbalisation, diagrammatic representation, tabulation etc., but its role is
clearly seen as that of connecting practical work to more formal
mathematics:

The information obtained from the observation of classrooms and teactiers
during the CMF project, has proved to be very illuminating. The CMF records
were of teachers using their own schemes of work and the methodi they
suggested as effective. Theie results give a different view of classroom
happenings than those reported by mathematics educators who are seeking
to change practice by the introduction of innovative procedures. The role of
the researcher in the formalisation lessons was that of observer and
recorder and was not concerned with intervention. We have sought to extend
these data by again observing experienced teachers,audio-taping their
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words and then transcribing the tapes. The Nuffield research involves nine
secondary teachers (seven of whom are heads of mathematics departments)
and two primary school teachers, one of whom is the head of the school.
Seven of these eleven teachers are engaged in study for a masters degree in

mathematics education. Their analysis of the research experiences forms
part of the work to be assessed for the award of the degree. The teachers
have volunteered to be part of the research and are both experienced and

confident. Each is asked to teach one of the following topics (already
investigated in CMF) to children, for whoM they thought it appropriate:
(1) the formula for the area of a rectangle, (10 the formula for the volume of
a cuboid, (iii) the rule for generating equivalent fractions, (iv) a method for
solvingalgebraic equations. The rule is to be the synthesis of a series of
practical experiences. The teacher chooses two matched sets of children to
teach, either-the two halves of a class or two classes which are seen as
roughly comparable in attainment. One group is taught using concrete
experiences leading to a formalisation and the other group has an additional
'bridging' experience.

The teacher gives a pre-test on the topic to each group, the test is provided
and marked by the researchers and is based on questions tried and found

informative in CMF and CSMS. For the 'normal' group the teacher writes a
scheme of work, a copy of which Is sent to the researchers for information.
The 'formalisation' lesson is tape-recorded and observed by a researcher,
then transcribed and analysed. The teacher is provided with a post-test and
asked to interview six children in the group in order to amplify the
information obtained from it. Some training in interview techniques is
given to each teacher and they are supplied with questions to use in the
interviews. After the teaching of Group 1 is finished, the. teacher meets
with the researcher to discuss the nature of the 'bridge' which forms the
distinctive feature of the second teaching sequence. The 'bridge' is defined
as essentially different to a) the two types of experiences already in the
scheme of work and b) whatever was used by the teacher in the
'formalisation' lesson, thus if the teacher used diagrams in the
'formalisation' lesson then diagrams could not be the distinguishing feature
of the 'bridge'. The second teaching sequence el.o includes pre avid post
tests. ond interviews ht; b frir'r; IAA tins on extrn set of octivities which form
It.e iihr71 i!J 116, f ifitryrilo'ff fl OM bid it tt Z., tint,
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months later to discover whether the conscious effort of the teacher to link
two very different types of working has helped the children see a link.

The research is in progress (Jan88) and it is hoped that some results can be
presented at PM 12. Scrutiny of the schemes of work of five teacher and
transcripts of some of their lessons leads us to make some comments which
might be recognised as true of other teachers in other places. Firstly, the
concrete material is not taken seriously by the teacher in that its essence,
be it wood or tin of particular length or weight is often ignored or distorted.
For example, one teacher asked a boy how he would show 2x + 3 = 17 using

Cuesenaire. rods (these were the manipulatives).. There is no rod designed to
be 17 units in length, so the child is forced to pretend. The conversation
continues thus:

fT: Teacher. P: Pupil]
T: (repeats), now how would I do it with my rods? How

would I do It with my rods?
P: Put a... say you had blue, on the bottom
T: Put a blue on the bottom, what's that going to represent?
P: The 17
T: That's going to represent the whole lot, the 17.
P: And then say, take pink and that would represent the

three that you're taking away
T: That's the 3 I'm taking away
P: And the gap left is the 2x

Already the bricks are superfluous and possibly stand in the way of
understanding since their colour and length have no. relation to the numbers
they are meant to represent. The words 'take away' which convey 'removal'
cannot be accurately used if there is no way the requisite amount of wood in
the blue rod can be removed. The model set up demonstrates a 'difference' in
length. Another teacher also used rods to introduce solution of equations
and even when the wood was no longer there, referred to 'chopping'. The
child was asked to remember how 2x r. 10 was represented:-

T: However we did have some that looked like this, where we
had 2 of the rods put together, equalled one whole rod,
remember? How did we do with those? Yes, Tamsin
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P: Say you had one x there, we put 2x plus.... you split it
in half

T: We split it in half, remember, we chopped it In half. We
kept takling about chopping it in half, yes?. So what did
we write down there Christopher, can you remember?

T: 10....

P: Take away 5
T: Oh no, I don't think...I can see you can see its 5 yes...go

back to you Tamsin
P: 10 divided by 2
T: 10 divided by 2, cos were chopping that one in half,

alright? Because we've got 2 of them remember, in your
mind, the two rods side by side equals the ten, chop it in
half....x eq.uals 10 over 2, x equals....

It is however much more sensible to remove.or 'take away' one of the 'x' rods .

(or 5) than to chop with a non-existing chopper where there is already a
split!

Secondly, the'material setup to represent the mathematics, very often
represents onl the simplest case or perhaps only one aspect of the rule.
For example if 1 represents 2x + 3 = 9, how does one represent
2x 3 = 9? Consequently, much of the formalisation is based itself on a
formalisation which is tied to the material. This does not deter teachers
from referring (verbally) to.theManipulatives although the.mathematics

:being discussed cannot itself be represented by,them. A classic example is
referring to -3, -4 as points on a number line when-the topic under
consideration is multiplication of negative..numbers.

It is possible that by tryirig to 'make contrete' certain parts of
mathematics, we have confused rather than helpectchildren. Can teachers be
expected to set up concrete models for many topics, in such a way that they
cover a number of situations and not just the simplest? In our research we
hope to provide evidence of planned ways of bridging the gap between

concrete experiences and formalisatioh In situations where the teacher
thought the practical aspect would be effective.
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THE KINDERGARTNERS' UNDERSTANDING OF THE NOTION OF RANK

Nicolas Herscovics, Concorde University
Jacques C. Bergeron, Universite de Montreal

Abstract

When the natural numbers are viewed as the means to measure
the rank of an-object in an ordered set, the notion of rank can
then be considered as a pre-concept of number. This paper
reports the results of a study regarding the kindergartners'
understanding of rank. Our investigation shows that three
distinct components of understanding can be found among this
age group. Ril 24 children tested indicated they had an intuitive
understanding as evidenced by their ability to estimate order
related concepts on the basis of visual perception. ft more
advanced level of comprehension, that of procedural
understanding, was evidenced when each child proved able to
use procedures based on one-to-one correspondences to
construct.. ordered sets subject to constraints on some
elements which had -to be positioned before or after or
together with another one. 11 third component of
understanding, that of abstraction, was studied through
various tasks ascertaining the sub jects' ability to perceive the
invariance of rank with respect to various surface
transformations, that is, changes in the disposition of the
objects which did not affect the given rank

In their seminal study on the emergence of number in the child's mind," Piaget and .

Szeininska (1941/1967)-dscriminated between the cardinal and ordinal aspects of number.
Much of their work on Cardnality was an extension of earlier work involving the
conservation of liquid and mass. They approached ordination through the study of
asyminetric relations such as those implied in the seriation of objects of different lengths or
of different masses. Thirty years later,'Brainerd (1973) sought to.estabiish a possible priority .

between the two complementary aspects of number also by using tasks involving length and
mass and found that "ordination emerges prior to cardnation". However,his findings may be
attributed- to his exprimental design for they are in sharp contrast "With-Piagers own
condusions:

"Several authors (Freudenthal,etc.) seem to have understood that I think the
ordinal number is more primitive than the cardinal number, a the opposite. I have
nevor made such a statement and have always considered, these two aspects. of
finite numbers indissociable and. psychologically reinforcing one another in a
synthesis that goes beyond both the indusion of dasses and th6 order of
asrnmetrical transitive relations" (Piaget;1973p.82)

We wish to thank our research assistants Anne Bergeron and Marielle Signori whose
suggestions have improved the quality of both the tasks and the questions.

- Research funded by the Quebec Ministry of Education,FCAR Grant EQ 2923
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But in fact, Freudenthal's disagreement with Piaget runs much deeper. It is at the level of
fundamental definition. Freudenthal distinguishes between counting numbers, by which
he means the number word sequence, and numerosity numbers which refer t. "the
potency or cardnality" of a finte set (Freudenthal,1973,170-171). When aup the
sequential nature of the counting numbers, they become aware of their intrinsic ordinal
nature. According to Freudenthal, in the genesis of the number concept the counting
number plays the first and most pregnant role. "(p.191) and he criticizes Piaget for ignoring
it: "His indifference with regard to the counting aspect is so deeply rooted that he mostly
tacitly assumes that his test child-en can count and he never mentions how far they can
counr(p.193).

We tend to agree with Freudental's view that the concept of number emerges from the
application of the number word sequence to various enumeration activities. We also agree
with Piaget's contention that the concept of order is independent of the number concept,
witness the various seriation tasks he has suggested. However, the notion of an ordered set
need not be restricted to serration of physical quantities. In fact, a set can be ordered simply
on the basis of the position of its elements. The position of any pencil in a set of ten pencils
of different lengths can always be ascertained on the basis of its size. But in a row of ten
chips, if the seventh one is removed and the gap it leaves is eliminated by readusting the
row, it will be very hard to re-insert the chip without knowing its predse rank. This example
highlights the ordinal use of number, that of measuring the rank of an object in an
ordered set. In this sense, the notion of rank can be viewed as a Re-concept of number.

In our analysis of the notion of rank, we have postulated three distinct components of the
child's understanding of this conceptual schema. A fret component,which can be
considered as an intuitive understanding of this concept, reflects a type of thinking
based essentially on visual perception. At this level, a child perceives a certain order in a
set and can decide about an object coming before or after or at the same time or
together with another one; whether an object is between two other ones can also be
determined from a purely visual estimation.

A more advanced level of operation is involved when childen can use a more rational
procedure to make these judgments about rank and position with reliability and precision.
The acquisition of such procedures brings about a deeper gasp of these concepts which
can be viewed as procedural understanding. These concepts can be assessed by
using procedures based on one-to-one correspondences. While still being
non-numerical in the sense that no enumeration is involved, such procedures can be
carried out physically by the children and provide them with an assurance that mere visual
estimation cannot achieve.

Still a more advanced level of understanding is evidenced when the child's conception of
rank becomes more stable and can resist various surface transformations. The cognitive
processes which enable child-en to overcome the misleading information they obtain from
their visual perceptions bring about a level of understanding which we qualify as
abstraction. It is characterized by their ability to recognize the invariance of rank under
transformations which change the &position of the objects without changing their rank.
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The present paper describes the different tasks we have designed to assess the
kindergartners' knowledge of rank-related concepts. These tasks have been used in
semi - standardized interviews with 24 child-en (average age, 5:8) coming from three
different schools in Greater Montreal. The interview dealing with rank lasted about 30
minutes and was videotaped. The same children were interviewed on their knowledge of
quantity and their responses are reported in a companion paper, maiginskalingrt
understanding of dscrete quantity by J.C.Bergeron & N.Herscovics.

Intuitive understanding

At the level of intuitive understanding, one can find primitive concepts of rank based purely
on visual estimation. The child develops ideas such as before, after, at the same time
or together, between, first and last without any recourse to numeration. In order to
assess this we designed the following task. Eight toy horses of different colors were placed
in the row shown below. At first it was necessary to verify that each child knew the colors
we used. Thus the child was given the eight horses and was asked to hand them over to the
interviewer who asked for specific colas. These were aligned as shown below:

brown orange yellow blue green black white Nci

Tat rotritrthritiqtrit
Ter ti

The questioning proceeded as follows:
(a) Look, my horses are in a race and here is the finish line.

Can you show me a horse that is before (in front of) the blue horse?
Are there other horses before (in front of) the blue horse?

(b) Can you show me a horse which is after (behind) the yellow horse?
Are there other horses after (behind) the yellow horse?

(c) Can you show me the first horse? Can you show me the last horse?
(d) Can you show me a horse that is between the white horse and the blue

horse? Is there another horse between the white horse and the blue horse?
(e) Can you show me two horses that come along at the same time (together)?

Results show that most of the 24 subjects could handle these questions' with ease. All
children had acquired the general meaning of "before" except one child who interpreted it
as "immediately before". Similar results were obtained for the question on 'after where
three children had interpreted it as "immediately after". Nineteen of the child-en understood
"at the same time", while five required the expression 'together. The notion of "between'
was understood by all children who pointed out the two horses between the white one and
the blue one. The wads "first" and last' were familiar to all subjects.

As can be seen from the previous tasks, the notion of order and many of its subconcepts
exist in the kindergartners mind. The notion of rank is somewhat may difficult to assess.

irr dire to the Ind Met white the child is exposed to all kinds of questions dealing with
(pintiliticntiost. thonn itaallilij with position in an ordered set are seldom raised. In. order to
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investigate the children's thinking about rank we thought that the notion of a parade was
quite adapted to our neads since it incorporates the idea of order which is maintained even
after motion (Mich is not the case in a race). A major difficulty we had to overcome was at
the level of language.

Initially, in our pretests, we had used the word place to indcate rank. This was understood
by some children and not by others. One common misinterpretation was due to the fact that
this word is also used to describe the site where an object was, its location. The question
° d it change its piece° could be interpreted in these two ways. Thus while an element
in an ordered set might have changed its rank when the first object in the row was removed,
some children answered that Its place dd not change because it did sot move°. The
same kind of linguistic problems surfaced with the wad "position°.

Yet every child we had interviewed in our prior research could use the natural numbers in
their ordinal sense, that is in their function .as a measure of rank. Each subject we had
tested in our previous experiments (Bergeron, Herscovics & Bergeron,1986) could identify
the second, third, fourth, element in a row. Quite interestingly, many children referred to
the object's rank as Its number (in French "son numero"). Thus, we decided that in order
to avoid ambiguity, we would use this word and in case it was needed we would convey the
meaning we wanted to assign to it, that of rank. The following task was developed to
handle the objectives mentioned above.

The subject was eked:
Do you know what a parade is? Have you ever seen a parade? On a parade
like this one, the Cars follow each other.
A row of 8 little cars, each one of a different color, was aligned in front of the child.

green white black yellow blue red brown orange
(a) Can you tell me what is the number of the little blue car?
(b) Can you show me the car which is the number seven car?

If the child dd not understand the word "numero° he or she was asked:
Can you show me the third car?
Can you show me the car which is seventh?
When i say third or seventh, that is its number.
Can you tell me the number of the little blue car?

Of the 24 children tested only 10 interpreted the wad "numaro" spontaneously as meaning
"rank° and the other 14 were taught. This proportion is somewhat lower than expected but

then, in ow earlier work, we had interviewed kindergartners five months later in their school

year. The word "numere provided some minor problem too. In response to the initial
question, some chiliten were picking up the blue car and looking for a number which they
expected to be inscribed, like on a racing car, but could not find any on our cars. This was
due to the fact that "numero" also refers to "numeral". However with all our subjects, the
intended meaning was easily established using the above scheme.

Variability of rank with respect to the quantity of preceding objects
One of our immedate question was to find how well the notion of rank was understood. To
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this effect we told the following story:
The parade is now stopped because the goon car (the first one) broke down.
The tow truck is corning to get it (removing the geen car).
Do you think that the red cur still has e same number no before in e
parade?
We referred here specifically to the red car for the child had not used any number to
determine its exact rank. The subject thus needed to reason about the question without any
specific number in mind. Eighteen of the children thought that the removal of the head car
changed the rank of the red car while six did not. We refer to this as the lack of perception of
the variability of rank with respect to the quantity of preceding objects.

Procedural understanding

As was the case with the notion of quantity, the procedure at stake here was the use of
one-to-one correspondence. The tasks were designed to ascertain if these children could
use one-to-one correspondences to establish ordered sets in which they had to use the
notions of "before", "after, and "at the same timed. A row of 8 horses were lined up in front of
them and they were given another set of horses:

ItarligaAllerIVT Itare
green yellow brown white red black orange blue

The children were then told:
I have here some horses on parade.

(a) Now, can you make a parade in which your red horse comes along at
the same time es my black horse? .

(b) Now I would like you to make another parade in which your red horse
comes before my black horse.

(c) Now, can you make another parade in which your red horse comes
After my black horse?

Although we thought these tasks might prove to be difficult, each one of our subjects was
able to handle them with ease. They used the interviewer's parade as a template for their
own and performed the necessary adjustments to fulfill the constraints that were imposed.
These tasks were more difficult than the earlier ones which involved mere recognition of the
relative positions. The tasks here necessitated the actual generation of the variously
ordered sets.

Abstraction

As mentioned earlier, abstraction refers here to the child's perception of the invariance of
rank with respect to surface transformations, that is, changes in configurations which do not
affect the rank. Three distinct tasks involving different transformations were designed.

Invariance of rank with respect to the elongation of a row
The first such task assessed the child's perception of the invariance of rank with respect to

the elongation of a row. A set of 8 different coloured trucks were laid out in front of the
subject:
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orange brown green red black white blue yellow
Look at another parade of trucks. Can you show me the blue truck? Look.
the parade moves on (stretch out the row and move all trucks).

(a) Do you think that the blue truck still has the some number as before in
the parade/

(b) Do you think that its number is bigger or smaller than before?
The parade was then stretched a second time and the questions were repeated in order to
verify the stability of the answers.

The responses indcate that 19 of the 24 children, (79%), perceived the invariance of rank
with respect to elongation. Seven of these, (64%), were among the 12 children under 5:2
and 12, (92%), were among the 13 aged 5:2 or over. Thus, there seems to be a maturation
factor involved. The overall success rate here was somewhat higher than in the comparable
task on the invariance of quantity (see companion paper) where the rate was 67%, the
croup of older subjects improving on the rank task, the younger ones having the same
success rate on both tasks.

Invariance of rigkiiitilL
Our next task dealt vAth the invariance of rank with respect to the perception of all the units.
The row of trucks arranged in the same order as in the last question was laid out in front of
the child who was told that the parade would move on and go under a tunnel:
Look, here is a parade of trucks. Can you show me the red truck? Now the
parade must get inside a tunnel. (The parade is moved ahead so that the first three
trucks are under the tunnel, thus hidden from view):'' red black white blue yellow
Do you Wilk that the red truck has kept the some number in the parade?
Why do you think so?

The parade is then moved ahead by another three truck and the same questions are now
asked about the blue truck.

The results are most interesting. Fifteen of cur 24 children, (63%), thought that the red car
had kept its rank even it the three cars preceding it were hidden from view. The second part
was aimed at verifying the stability of the initial response. Out of these 15 subjects, 14 still
believed that the blue truck had not changed its rank when it reached the entrance of the
tunnel. Thus, these responses can be viewed as validated. What is most striking is that
while nearly all chikteri failed at perceiving the invariance of quantity when part of a row
was hidden, (4% a 13% dependng on the task), a majority of these same subjects
perceived the invariance of rank when part of the row was out of sight.

Conservation of rank
The following task was designed to verify it the child perceived the invariance of rank in the
presence of two rows. The test is similar to Piagers test on the conservation of quantity.
Hence we are calling ours a test on the conservation of rank. The interviewer aligned 9 little
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identical cars and asked the child to make another parade right next to hers with another
identical set of 9 cars. A piece of blue cardboard was set in front of the two parades to
represent a river and a small piece cardboard of a different color was used to represent a
ferry boat.
Look. I have a parade of cars which go towards a river. Would you make
another parade just like mine? The parades must cross the river in a little
ferry boat. But the ferry can only carry two cars at a time, one car from each
parade. When the captain is ready he signals for one car from each parade to
come on the ferry. (Cross the river with one car from each parade and come back for two
more cars):

4011

4116. " 44 44 44 194
44 44 414 414 44 44 4li&

Did you understand how the parades will cross the river? Good. I'm putting
back the four cars in the parades.(After replacing the four cars, the interviewer places
an arrow on the 7th car in her parade)
Now I'm putting this little arrow on this car.Can you put this other arrow on

the car in your parade which has the same number as mine?

Now look, the parades move on.(Move the child's parade a small dstance but move
the interviewer's parade further so that in coincides with the fifth car in the other parade)

406. ate "
414* 414 *le« 4 4 406.

Do you think that the two cars with the arrows will cross the river at the same
time? Do you think the two cars still have the same number?

The results to these questions are quite striking. Only two children out of 24 believed that
the two cars would cross the river at the same time. Asked for an explanation, those who
could verbalize mentioned that the cars were no longer next to each other. In order to verify
that the subjects understood the problem dearly, they were asked to show the interviewer
how the parades were to cross the river. Each child demonstrated that he a she had
gasped the situation wel by crossing two pairs of cats. After having crossed these two
paks of cars, each child was asked:
And now, do you think that these two cars (incficating the ones with arrows) will
cross together?
With the two mated cars now In fifth position, only 4 of the child-en changed their answer .
The other 18 held on to their initial view. The chicken were then asked if the two cars would
cross together should the two parades get back next to, each other:
If my parade gets back next to yours like before, will the two cars with the
arrows cross at the same time?

All children responded affirmatively stating that they would cross together. Thek explanation
was quite consistent: 'the cars would be next to each other'. These answers illustrate quite
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well Piaget's distinction between rove Teibility and undoing (Yenversibilite°). Our
subjects' thinking is not yet reversible in the sense that they cannot as yet compensate
mentally for the surface transformation they have witnessed. However, 'they can perfectly
well perceive the undoing of the transformation which will bring them back to the initial
state.

In comparing the results of this task with those of the conservation of quantity, we found that
the two children who conserved rank also conserved quantity. But there were eight others
who conserved quantity and did not conserve rank. This would imply that from a cognitive
viewpoint, the conservation of quantity precedes the conservation of rank, at least in our
present culture where experiences dealing with quantity are more frequent than those
dealing with rank.

y way of conclusion

As has been shown by these results, the kindergartners' understanding of rank is quite
extensive. Their success rate here is remarkable since all our tasks involved the notion of
rank in a more abstract form than when related to serration of physical quantities.
Nevertheless, by the age of five and a half, nearly all children can handle order related
concepts within the context of the position of the elements of a discrete set. Not only can
they all use visual estimation but they in fact can use procedures based on one-to-one
correspondence to achieve accurate condusions. Their perception of the invariance of rank
varies with the particula transformations and based on their success rate one can establish
the following hierarcy:
Invariance of rank with respect to
elongation of a row
visual perception of objects in a row
comperison with translated row (ferryboat)
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INITIAL RESEARCH, INTO THE UNDERSTANDING OF PERCENTAGES

Rina Hershkowitz and Tirza Halevi, Weizmann Institute of Science, Israel

This paper describes several steps in understanding student

behairiour in percentage tasks. The data were obtained from
questionnaires and interviews with:6th and 7th graders.'

.
Results show that student responses to types of tasks (which

are mathematically similar), are quite different.

The strategies which students used were identified and

'analysed.
An analysis of patterns of behaviour shows that students also

tend to vary their strategies within'the:same type of task,

according to the numbers involved.

I. INTRODUCTION

Percent is one of the most commonly used mathematical concepts. in

everyday life. However, many students as.well as adults lack even an

intuitive understanding and'cannot use the concept correctly:AHart, 1981,

Carpenter et al, 1980,Wiebe, 1986).

The research goals for this project are:

(1) Analysis of student difficulties and thought processes in Percentage

tasks.

(2) Development of teaching strategies and remedial tools to overcome the,

above difficulties.

Here we will describe the research conducted to realize the first goal.

There are three types of tasks in percent problems:

i) To find aquEintity (A) which is prof a given quantity (B).

ii) To find what percent (p) one quantity (A) is of another quantity (B).

iii) To find the quantity (B) if we know that (p) percent of it is equal

to a quantity (A).

Mathematically the above tasks are all expressed in the one proportion

. A p_
'

but some approaches to teaching percent use different
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strategies for the above three types of task (see, for example, Smart,

1980).

What is the student's "psychological approach" to the different percent
tasks?
Does it change from one type of task to the other?
How does student reasoning differ from student to student on the same
task?
Do certain number relations encourage certain strategies whether correct
or not?

The following is a description of few steps of a study designed to find

some answers to the above questions.

II. FIRST STEP

In a preliminary investigation, we administered a questionnaire to

students in grades 7 and 8 (N=76) after they had studied percent. The

questionnaire included items of the first two types, in two comparative

dimensions - accurate computation and estimation. In addition, we

conducted unstructured interviews with a few of the,students. Students

were much more successful with first type than second type tasks in both

dimensions (see Table 1).

Aecurete Computation Estimation

Find 48%
of 150

What percent
is 12 of 807

Estimate whether
53% of 900 is

Estimate whether 60
is of 245:

Correct 61 26 more than 450 80 more than 25% 69

Incorrect but
reasonable

11 18 less than 450 10 less than 25% 29

Incorrect 20 . 22 450 9 25% B

No response 8 34 no response 1 no response 4

Table 1: Distribution of student responses (% to sample tasks of the;
first two types.

In the accurate computation, most students used a correct algorithm for

tasks of the first type, but for those of the second type, if an

algorithm was used at-all, it was usually different and incorrect.

Many of those who wrote down the correct algorithm in the first type

tasks, did not, however, show understanding of the concept.
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On the other hand, we found students who showed understanding, but did

not necessarily use the standard algorithm.

III. SECOND STEP

In order to understand better the student's conception of percent we

decided to investigate mainly the global (intuitive) understanding of the

percent concept in the different tasks.

We used a questionnaire in which the students were asked to give their

reasoning for each answer, as well as structured interviews.

In most of the tasks, the students were asked to estimate. We believe

that estimation reveals intuitive understanding, if it exists.

In order to guarantee "real estimation" (without computation) we used

various types of item:

i - Items depicting area or volume without quantification.
ii - Items with "messy" numbers.
iii- Items with a time limit, imposed by the interviewer or by the

microcomputer.

We administered the questionnaire to two 7th grade classes at the

beginning of the school year. The students had had some formal teaching

on the subject in their previous school year:

The answers and reasoning were analysed and followed by recorded

interviews with some of the students. In the following, we first

describe some of the students' strategies and then various "student

behaviour".

Types of Strategy

a) Strategies without any evidence of understanding the concept.

1) Additive strategies level 1.

Here the student adds or subtracts the quantities presented in the task.
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Examples: 1) Hagit (in the interview):

I : You had a collection of 140 match boxes and gave your friend 72 of

them. What percent of your collection did you give to your friend?
(type 2).
Hagit: About 60 - 70 percent.

I : Why?
Hagit: Because 140 minus 72 is about 60.

2) Hagit (in the questionnaire):
Item 1: "Mark in B 25% of the quantity in A."
(type 1). .

Hagit shaded the right quantity and "explained":
"Because in A there is 20%, so I added 5%".
Item 2: "The quantity in B is
about % of the quantity in A." (type 2).

Hagit wrote wand "explained":
"I added what we have in A and B and got about 40 ".

Hagit added the quantities involved, and "named" it percent: When

she had squares, she just counted the squares in each quantity, when

she did not, she imagined them.

ii) Division strategies level 1.

Here. the student divides the given quantities but again no

understanding can be identified.

Example: Adi (in the questionnaire): "48% of 150 (type 1), is about
3% of 150 because 48 goes into 150 about 3 times"...

b) Strategies which may reflect some understanding.

i) Additive strategies level 2.

.Here the student performs some additive manipulation with the

quantities presented, and relates it additively to a "different

system" which is somehow supposed to "transform" the result into

percentages.

Example: Michel (in the interview)

I : You had a collection of 140 matchboxes' and you gave your little
sister 120 of them. What percent did you give her? (type 2)

Michal: 80%
I : How?
Michel: I subtracted 120 from 140 and glot 20 and then I subtracted it

from 100 and got 80%.
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Answers that one can get by using this strategy are "reasonable" for an,

interval of numbers, i.e. when B is 'close" to 100 and A < B (when Bs.

100 we get the right answer). In some cases we had the impression that

the student had some global intuitive judgement when (s)he gave quite a

reasonable answer, and then when we asked him/her to explain it (s)he,

created the above algorithm.

ii) Division strategies level 2

These strategies are usually used in type 2 tasks:

In the first one the student checks how many times the smaller quantity:

goes into the large quantity (B : A).

Example: Naama (in the interview):
I : You had 140 shekeland paid 72 ,.shekel for shoes. Estimate the

percent you paid.
Naama: 2% and a little more because 140 : 72 ... 72 goes into 140 about

twice...
I : And if you paid 35 shekel, what percent of 140 shekel would that be?
Naama : about 9%,
I : When did you, pay more, in the first or in the second case?
Naama : In the first, because 72 is more than 35
I : When did you pay a greater percent of your money?
Naama : (after some hesitation) When .I paid 35 shekel .... I think ...
Naama did not feel any conflict in the above situation. But other

students used this strategy (B : A) as a fifst step to the right

answer.Example:

Dan : "35 of 140? ... 140 divided by 35 is 4 I think, so it is 25%".

- In the second strategy the student use the inverted, division (A : B).

Example: Miri (in the interview): I : Estimate whai percent 72 shekel is
of 140 shekel?
Miri: 1/2% I : Why?
Miri : Because 72 is about half of 140.
I : Half and 1/2% are the same? Miri: Yes
Miri understands percentages as "part of", but she does not know that it
is proportional to 100.

c) Strategies which lead to reasonable answer.

i) Global quantitive judgement.

,Here the student uses some wholistic judgement to estimate the

relative sizes of the quantities in the given task. It might be that.
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some students use this strategy to check the result obtained by other

strategies. But some of them, like Adit in the following example.

use only this.

Adit (in the questionnaire): "The

quantity in. B is about 25% of the

quantity in A because in B there is

almost nothing and in A there is almost
all".

ii) Halving (doubling) and quartering (see Hart 1981).

Examples:
1) Pal (in the interview): "260 of 367 is about 65%, because the

difference between 367 and 260 is about 100, so 260 in more than half,

therefore it is about 65%". .4_: r]

2) Orly (in the questionnaire):
Item: "Put in B 25% of the quantity in A".

Orly shaded an area in B and explained.

"In A we have 50% (she relates the, shaded
"area" in A. to the whole of A), so we must
shade half of it to get,25%"

3) Vered (in the questionnaire):
Item: "The quantity in B is about ....% of
the quantity in A". Vered wrote 25% and

explained: 4 25% = 100%

1

A a

Hart (1981) notes that: "Doubling and halving are the easiest aspects of

ratio; when presented in either problem form or drawing". It is clear

that this strategy can be used in only a very limited number of

situations; We found that in these situations many students do use it.

iii) Proportional Strategies

Examples: Michel (in the questionnaire):
Item: "Put 75% of the quantity in A

into B". Michel shaded the right

7 0 =

Voq
Item: "The quantity in B is ....% of the

quantity in A". Michel wrote 60% and

explained: In A we have 5 rows, in B 3 rows:

3. 60

area and explained:

71
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The above examples are of course evidence of true understanding of the

concept.

In the above section we tried to categorise student strategies in first

and the second type of tasks, in the hope that it will bring us closer to

the understanding of-students' percent concept image.

Individual Student Behaviour in Percentage Tasks

Like Hart (1981) in the study on Ratio and proportion, we found that,

although some children are very systematic, "most children on interview

(and questionnaire) changed the'method they used continuously". The

change in behaviour seems to be due to the type of task and the numbers

involved. Many strategies have some "numerical limitations". Some of

these limitations lead(or may lead) to change in student behaviour.

Examples:.
1) Gal, in finding what percent A is of B, when A is close to a quarter
or half of B, uses halving, or quartering, and when the numbers are more
"difficult" uses some "difference algorithm" plus quantitative judgement.
2) Miri is usually very systematic. In finding what percent A is of B,
she divided A by B when the result is a unit fraction or nearly so; i.e.
10 of 100 is 1/10%, 51. of 100 is about 1/2%, 35 of 140 is about 1/4%
etc.... But for 98 of 100 she claimed that she does not know.

- The problem is how to get some overview of students' patterns of

behaviour. We have started to use graphical analysis of individual

behaviour in order to discern a general pattern. (Wilkening 1979 used it

to describe.and compare group behaviour).

In type 2 tasks, if one plots a student's answers as a function of the

quantity A, with a curve for each value of B, then:

i) If the student uses proportional strategy we will get a proportional

graphical model:- The set of curves form a diverging fan of straight

lines, the slope of each line is B/100 (see figure la).

ii) If the student uses additive strategy we will get an additive

graphical model: The set of curves form a parallel fan of straight

lines (see figures lb and
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Figure 1: Graphical models of the different strategies:
(a) proportional (b) additive (B-A) (c) additive 100 - (B-A).

It is clear that strategies, like inverse division (A t,B) and halving

also yield the proportional model. Strategies like global intuitive

judgement can be either proportional (a) or additive second level (c)%

We used these models as tools in the graphical analysis of single

student behaviour. Examples: In Fig. 2a we see that Hagit for B=140,

has changed her strategy from B-A (for A=35, 80) to global judgement

(for A=100), and to 100 -(B-A), (for A=120). For B=100 she

systematically uses B -A.

Michel uses strategies which lead more or less to the (correct)

proportional answer for B=60, 100, 400. 'But for B=140 (which was the

first to be asked) she uses different strategies which are usually

wrong. When A is about 50% of B she is very systematic, halving each

time.

Figure 2a

73
Figure 2b
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The above are few steps towards the understanding of individual

behaviour in percent tasks... There is more to be done in studying the

individual and in studying group behaviour and its quantitative

description. By'this study, we hope to be able to contribute to the

improvement of the teaching and learning the subject.
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STRUCTURING AND DESTRUCTURING 1 SOLUTION:

AN EXAMPLE OF PROBLEM SOLVING WORK WITH THE COMPUTER1

J.Hillel, Concordia University, Hontreal

J.-L. Gurtner, University de Fribourg

C. Kieran, University du Quebec Hontreal

In this paper we analyze a programming solution to
a geometric task in which the goal figure is
constrained by several conditions.
Our analysis points to an overwhelming tendency on
the part of the solvers to proceed by operating on
the figure appearing on the screen, rather than on
the problem's conditions. Consequently, such
problems may end up being 'solved' graphically
without an understanding of their embedded relations.

ilany types of mathematical problems including numerical,

geometric and deductive ones are now given to children to be solved

as a computer activity. There are persuasive arguments that the use

of computers in problem solving renders it more active, inter-active

and engaging.

Certainly, the use of computer encourages an experimental,

empirical approach to problem solving. Consequently, children.

working in a computer environment develop belief systems about what

constitutes successful problem solving. Gurtner (1987) discusses

some of'these beliefs when the problems worked on are of a geometric

type. He'suggests that one component of the belief system is that

success is completely identified with correct-looking screen

productions. Thus, 'success' may be achieved even though the

intrinsic aspects of the problem are completely circumvented.

It is this last point mentioned above which is the object of our

analysiS. We reconsider a particular problem solving activity,

1 Research supported by the Quebec Ministry of Education. FCAR Grant *EQ3004.

Dr. J.-L. Gurtner was visiting Concordia University on a Swiss Government FNRS Grant.
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already analyzed from a metacognitive perspective by Gurtner, in

terms of the relation between the process of solution and the

process of understanding.

THE 4-TEE TASK:

The task was given to six twelve-year olds during Session #4.

They were presented with a computer printout

and were asked to write the (Logo) program that would produce the

above figure.

The children had at their disposal three Turtle commands for

producing the figure. These were:

BASELINE :X in which the turtle 'draws' a horizontal line to its

right, X units long, and returns to its initial position.

TEE :X in which the turtle 'draws' the figure Tee and returns to

its initial position.

c b d

X ab.= cd = X units

a

NOW :X in which the turtle moves horizontally X units (tO the

right if X > 0, to the left if X < 0),without leaving a trace.
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With these commands, the goal figure was viewed as four Tees

placed on a baseline.

When the figure was presented to the children, some, of its

features were described as explicit conditions, namely

(i) the Small and large Tees were aligned on each side

(ii).the large Tees were contiguous ("no overlap and no gape)

Finally, a constraint on the order of the production of the

figure was added:

(iii) the Baseline had.to be constructed first (i.e. the program had

to begin with the command BASELINE).

Task Analysis:

An exact solution of the task requires that the geometric

conditions (i) and (ii) above be reinterpreted as numerical

relations which govern the choice of inputs to, the commands

BASELINE, TEE and NOE. Thus, labelling parts of the figure as

follows

T T

A C S
FIG. 1

and letting t and T correspond to the inputs for the small and large

Tees, we have ,the following length relations:

AC = DB = 1/2 t

T = 21. (alignment condition)

T = CD (contiguity condition)

These relations establish an implicit relation between the length

AB (which is the input to BASELINE, the first command in the

program) and the length t (which is the input to TEE, the second

command in the program). Finding the actual relation between t and

AB is non-trivial and its derivation requires several algebraic

substitutions, i.e.

AB = AC + CD + DB = 1/2 t + T + 1/2 t = 1/2 t + 2f + 1/2 t = 3t .
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Now, without our imposition of condition (iii), it would not have

been a very difficult task for these children. They would have, in

all.likelihood, constructed the !our Tees first and then fitted the

Baseline by a sequence of visually-based trial and error

adjustments, i.e.

By adding the constraint that the Baseline had to be chosen:

first, we greatly increased the complexity of-the task. It meant

that, having arrived at an incorrect solution, the children would

have to (i) identify the appropriate input to be Adjusted, (ii)

having change this input, and (iii) to reestablish all the relations

with the other inputs. In particular, trial and adjUstment strategy

could not proceed by isolating andmodifying a single input.

Two aspects of the children's solution interest us here:.

(a) Understanding theyroblem,and, in particular, the realization

that, once having chosen a fixed Baseline, all the other inputs were

determined. 'We did not expect that the children would be able to

link t to AB (the unobvious relation t = 1/3 AB merely assured us

that. the problem would not be solved surreptitiously). We did expect

that the children would eventually realize that t was the only input

which they could freely modify, if they, had opted for a trial and

adjustment strategy.

(b) The choice of inputs and, specifically, Whether the inputs

satisfy one or several explicitly derived relations.

We proceed by analyzing the solution process of one child, which-

was rather typical.

ROSA'S SOLUTION:

Rosa had already spent most of the previous session (session #4)

on the 4-TEE task. In session #5 she restarted. it; without looking

back at her previous attempt.
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Initial solution of session 5:

Rosa's initial program, which was similar in nature to the one

she had produced in the previous session, was strongly influenced by

the symmetry of the figure - Whatever was done on the left side of

the Baseline had to be done on the right side as vell. Her program

had the following structure:

BASELINE

TEE t

HOVE AC

TEE T

BOVE CB

TEE t

MOVE BD

TEE'T

AB

left side

right side

T -r

tl 1+
A C .D 13

Her inputs acme AB - 130, t = 20, T = 40, AC = BD = 10 and CB =

120.

He note that her initial attempt was very controlled. The choice

of inputs was done with care, and the relations T 2t, AC = 1/2 t

and CB - AB - AC were all satisfied. At this point there VW no

particular linking of t to AB, except in that AB was quite large

compared to t and T. This might have been a deliberate strategy on

her part solls to allow her more manoeuvrability; in the previous

session, she had consistently chosen t as 1/2 AB which resulted in a

large overlap of the big Tees.

Output 3,

ROsa's spontaneous reaction to-the output was to 'shrink' the

Baseline. AB was decreased from 130 to 90 but none of the other

inputs was touched. Her expectation was that this action would have

an 'accordion' effect of bringing the Tees on the left and right

closer together, as if she were dealing with a rigid figure.
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The output gave Rosa a clear indication of what else had to be

modified. She then reestablished the relation CB - 118 - AC by

decreasing CB from 120 to 80. .

Output 3

The output indicated that the the goal figure was now within

reach. The large Tees were much closer to each other than before and

this suggested an obvious action for closing the gap, namely, to

operate on those Tees. This is, in fact, what Rosa did. Me started

to close the gap by a sequence of stretches of these Tees. Thus the

input T, initially 40, underwent six cautious increases, each of

which was followed by an output on the screen. When T was set at 63,

no gap appeared in the output which led Rosa to conclude that the

large Tees were now contiguous.

Rosa's actions were the start of the 'destructuralization' of the

solution. In her effort to close the gap, she forgot that T and t

were linked by the relation T = 2t and that T should not be changed

on its own. She was so preoccupied with closing the gap that she

didn't even notice in the outputs that the small and large Tees were

no longer aligned.

Furthermore, in contrast to her way of choosing inputs earlier,

the new values of T were not based on any explicit relations (such

as T c, CD). Rather, she adopted what we have termed the

'qualitative' approach of 'making bigger' (see Kieran et al.,1987).

In fact, the large Tees were now overlapping, something that was not

discernable by looking at the output. Rosa had, in fact, replated a

gap by an overlap and lobt the alignment condition in the process.
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Rosa expected the output to indicate a successful solution.

However, now she did notice that the small Tees were too small and

not aligned with the large Tees. She continued the

destructuralization of her initial solution by ignoring the

relations T = 2t and AC 1/2 t and proceeded with a single stretch,

changing the input t from 20 to 28, leaving all other inputs in the

program unchanged. Her Tees now were neither aligned, nor

contiguous nor correctly placed on the Baseline.

Output 5

Rosa realized that she was not getting any closer to a solution

and gave up on the task.

DISCUSSION:

There are certain features of the attempted solution by Rosa

which were quite prototypical of the way most of the other children

solved this and similar problems. Her initial solution, planned away

from the computer, respects most of the relations governing the

lengths of the different components of the figure. However, as the

solution process progresses, the screen output becomes the relevant

'data'. There is no longer any attempt to either satisfy already

established relations or derive new ones from the given conditions.

Qualitative and local solution strategies become dominant; an

initially structured solution becomes progressively more

destructured and. ad hqc.

This solution behaviour was prevalent even among children who

ended with a,'successful' solution (in the sense that the output on

e-^
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the screen seemed to satisfy the required conditions). They might

have persisted longer with 'patching up' the different outputs or,

eventually, adjusted the Baseline to fit the Tees, thus ignoring one

of the explicit constraints. In either case, they were no closer to

really understanding the nature of the problem.

Bost research into problem solving has pointed to a frequent

alternation, while solving a problem, between the solution phase and

the understanding phase. To quote Simon (1978), The solving process

appears to exercise overall control in the sense that it beginsto'

run as soon as enough information has been generated about the

problem space to permit it to do anything. When it runs out of

things to do it calls the understanding process back to generate

more specifications of the problem space" (our emphasis). To the

extent that the above typifies problem solving behaviour, the

behaviour that we have described seems rather anomalous. We put

forward the following explanation for this: Using a computer is an

action-oriented activity; once a solution phase is started one

peldom runs out of things to do. Consequently, the process of

understanding may simply not have an occasion to be.called upon.
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KETACOGNITION: THE ROLE OF THE "INNER TEACHER"(3)

Ichiei HIRABAYASHI and Keiichi SHIGEMATSU

(NARA University of Education, Japan)

ABSTRACT

The nature of metacognition and its implication to

mathematics education is our ultimate concern to investigate

through a series of our researches. We argued in the last

two papers that metacognition is given by another self or ego
which is a substitute of one's teacher and we referred to it

as "inner teacher". In this paper we will show a more

concrete description of pupils' metacognition through
teacher's responses of the questionnaire. Especially we will

prove that there is a close correlation between pupils'

metacognition and teacher's utterances in class sessions.

AIRES AND THEORETICAL FRAMEWORK OF THE RESEARCH

The ultimate aim of our research is to have the clear conceptions

about the nature of metacognition and to apply this knowledge to improve

the method of teaching mathematics. This paper is the report on the

preparatory works for this aim.

In our former papers presented to PRE annual conferences, we have

argued that metacognition would be formed through teachers' behaviors

and utterances in the classroom lessons. If we may use a metaphor,

teacher enters in the pupil's mind through the lesson and becomes

another self of the pupil, monitoring, evaluating the original self's

activities. So we have referred to this another self as inner teacher

because it plays the same role as the actual teacher in the teaching-

learning situation.

The favor of this metaphor is that we could have the practical

methodology te investigate the nature of metacognition; that is, we may

only collect many varieties of teachers' behaviors and utterances in the

lesson and carefully examine and classify them from some psychological

view-points.

Following to this research scheme, we have done two works:

1) we have collected teachers' utterances through the lesson

observation and make the list of the questionnaire both to teachers

and students to know which items are the most used during lessons

8:3 by teachers. Then, we have compared the two kind of these

responses, one is from teachers and the other is from students.



- 411 -

We think that the items common to the both responses would be

suggest the essential components of metacognition. We should add

to say that the data from students were from university students of

mathematics course for elementary school teacher and nonmathematics

course for the same, and the contrast of these two kind of students

seemed to suggest some important things about the nature of

metacognition.

2) we have classified the said list of Ieachers' utterances for

the lesson of the problem-solving situation. As we will show later

this situation is the most promising to investigate metacognition

and we had also here some interesting results suggestive to our

future direction of the research.

METHODOLOGY OF THE RESEARCH

1. Teacher's Utterances in Class Sessions

(1) Making the list of questionnaire

We have gathered teachers' utterances from the recorded

teaching-learning processes. On these records, we made the list of

questionnaire. We classified these items of questionnaire into 4

classes according to the types of teachers' behaviors in the lesson:

1) explanation 2) question 3) indication 4) evaluation

From each category, some items are shown in the following;

1) explanation

"If you can draw a figure, you may solve problem."

"I(teacher) myself used to make a mistake."

2) question

"Can you use this strategy at any place!"

"Can you explain the reason for it?"

3) indication

"Read the problem carefully."

"Please give me an example for that."

4) evaluation

"Good!"

"You could have grasped the important point."

(2) Data collection

84
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We sent the questionnaire to teachers in all levels of school and

had responses from them, numbers of which were as follows:

1) Elementary school teacher 38

2) Junior high school teacher 24

3) High school teacher 16

2. Students' Impressions about Teachers' Utterances

We have used the same questionnaire to analyse university-

-students' impression of their teachers' utterances in their school

days. This is because, as we argued, teachers' utterances would have

became the important-components of students' metacognition.

We collected the data not only from students in mathematics major,

but also in non-mathematics major. The numbers of each were as follows:

1) Student of mathematics major 29

2) StUdent of non-mathematics major 44

3. Metacognitive Framework of Problem - solving

A classroom lesson- includes varieties of activities of students.

and among them we notice the so-called problem solving activities are

the most preferable phenomena to think over the nature of metacognition,

because there we may-observe many features of this complicated concept.

Thus, we exclusively concerned with theie learning situations in our

research of metacognition.

At first we introduce the classification frame4ork of teachers'

utterances, which has two dimensions: one may be referred as the

problem soloing stages and the other as metaknowleabe categories, and so

we have 24 sections in all as is shown in the following figure. The

former dimension is suggested from that of Schoenfeld and the second

from that of Flavell and both of them were a little modified by us:

(Figure 1) Metacognitive framework in problem solving

1. GENERAL STAGE

11) environment 12) task 13) self 14) strategy

2. ANALYSIS STAGE

21) environment 22) task 23) self 24) strategy
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3. DESIGN STAGE

31) environment 32) task 33) self 34) strategy

4. EXPLORATION STAGE

41) environment 42) task 43) self 44) strategy

5. IMPLEMENTATION STAGE

51) environment 52) task 53) self 54) strategy

'6. VERIFICATION STAGE

61) environment 62) task 63) self 64) strategy

Some comments will be needed about this framework.

To the Schoenfeld's stages we add the ,'general stage' in the

beginning; because we think that there are some metacognitions which can

not belong to the specific stage of him but have influences to all

stages; for instance,

"Don't be afraid of mistake, you may do mistake."

would be made in any stage of students activities.

RESULTS AND DISCUSSION

I. Categorization of items

Contrasting responses from teachers and students, we classified

them into three categories according to the frequency of coincidence, as

follows;

1) Category I

In this category each item is responded by above 50X of the

teachers and above 50X of the students. Some examples are as follows:

"Do you have any question?"

"Try to figure it out by yourselves."

"Yes, sure!"

2) Category II

In this category each item is responded by above 50X of the

teachers but by only a few students. Some examples are as follows:

"You already experience in solving problem similar to this."

"What is the given condition?"

"If you can solve problem by a strategy; try to solve it by

another strategy."

"It is an interesting strategy." 86
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3) Category III

In this category each item is responded by only a few teachers but

above 50% of the students. Some examples are as follows:

"This is a good problem"

"How can you describe it in the expression?

2. Some different utterances according to the school level
_

There are some difference in the number of responses according to

the school level.

1) Elementary school teacher

"What is the given condition?"

"Solve the problem in any way you like."

"You are bright."

2) Junior secondary school teacher

"If you can draw the figure, you can solve the problem."

"When you have finished, please check the pioblem and your

answer once more."

3) Senior secondary school teacher

"Have you finished?"

"If you lost your way in solving the problem, please read

and analyse the problem once more."

3. Teacher's Utterances in the Problem Solving

'

Here we mention some interesting utterances ttiat migfit"have some

connections with the formation of metaknowledges in each stage of

problem solving situation. Some items are as follows:.

1) general stage

11) "You may make mistakes."

12) "This is the first time for you to soive this type of problem."

13) "Solve the problem carefully."

14) "Solve the problem by yourselves without other's help if

possible."

2) analysis stage

22) "You have already the experience in solving problem similar to

this." 87
24) "If you can draw the figure, you can solve the problem."



- 415 -

3) design stage

34) "This problem may not be solved by computation only."

4) exploration stage

44) "Try to reduce the problem to a easier, and similar problem."

5) implementation stage

52) "This problem may be slightly difficult from the previous ones."

53) "Don't do too many things at a time, or you may mistake."

54) "How can you describe it in the expression?"

6) verification stage

62) "This problem is interesting."

63) "If you can't understand the problem and don't know the answer,

you must review it once more."

64) "Can you use that strategy at any time needed?"

In some sections of this framework, we can't find teacher's

utterances from this questionnaire.

CONCLUSION

1) In the classification of teacher's utterances, we can clearly

notice that teachers speak-very often for 'indication' to children. This

may mean that in our country teachers are apt to assume an attitude to

'teach' not to make pupils learn of their own accords.

2) In the framework of problem-solving (figure 1), we see that

few utterances belong to sections 12), 14), 44) and 63). This may show

that teachers often emphasize the strategy of solving exclusively,

taking less care of other important features of solving activities.

3) In the comparison between data of teachers' and students', we

can guess that teachers speak not so much in the stage of 'design' and

'exploration', but.studenis have received much impression from teachers'

utterances of these stages.

4) The comparison between students of mathematics major and

non-mathematics major in university shows that the former may have much

metaknowledges concerning to the positive attitude toward problem-

solving, while the latter seems to 'stick too hard to stages of analysis

and implementation.

5) Teachers' utterances are different according to the kind of

school level: Elementary school teachers' utterances cover all of

stages of problem solving, but teachers of higher levels incline only to'
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speak more in the particular stages of problem-solving especially of

'analysis' and 'strategy!.

In this report we think that we could have clarified in some

degree the close relation which the teachers' utterances has to the

formation of metacognition of the students, but we are still very far

from analysing the mechanism of the formation. Through we personally

believe that there would be the critical period of this formation in

around 3rd grade in the elementary school, the verification of this fact

'must be left to our future researches.

Finally we should thank to Prof. F.K.Lester,Jr. and Prof.

J.Garofalo for having much instructions from their works. We think our

research is different from theirs in the next two points:

(1) They seem to have their data through the individual teaching

and interviews, but our data originates from the daily classroom

lessons.

(2) Their data seem to come mainly from high schools, while ours

cover all levels of schools.
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FORMALISING INTUITIVE DESCRIPTIONS
IN A PARALLELOGRAM LOGO MICROWORLD

Celia Hoy les & Richard Noss
Institute of Education, University of London

Abstract. This paper reports a.follow-up study to that presented in Montreal at
PMEXI, (Hoy les & Noss 1987) in which we reported on an investigation of
pupils' interactions in a Logo-based parallelogram microworld. In this study,
we take account of pupils' initial and final conceptions, and present findings on
how understandings developed in the computer context were synthesised with
those developed within other domains.

The framework within which this study was located consists of four
dynamically related components of mathematical understanding: the use,
discrimination, generaliSation, and synthesis of mathematical notions (UDGS).
Such a model of learning presupposes an environment which allows pupils
actively to construct their own understandings on the basis of informative
feedback. An interactive computer environment can (under appropriate
experimental conditions) fulfill such a role.

In this earlier study we noted some confusions between turtle tam and angle.
We also found that pupils frequently constructed procedures with more than
one variable (input), and used them without making the relationship between the
variables explidit within the program these we referred to as implicit, action-
based generalisations -- and we noted that an awareness of the relationship at a
conscious level would be unlikely to occur without intervention. The study also
identified different levels of discrimination: discrimination of the features of
the figure without regard to its available symbolic representation, and
discrimination within the symbolic representation without regard to its-visual
outcome. Finally, we observed how the symbolic representation of a computer
program acted as a form of scaffolding, (Hoyles and Noss, 1988) allowing the
pupils to sketch out their global structuring of the pfoblem before 'turning their
attention- to local detail. An overall conclusion concerned the importance of
pupils' coming to synthesise the symbolic description with the geometrical
image.

Subsequent to the study we noted the need to investigate the following points: -
pupils' Conceptions of the relevant mathematical notions prior to the

experimental phase;
o if and how understandings developed in the computer context were

synthesised with those developed within other domains.

9 0
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We had also hoped to probe pupils' classification of squares or rectangles in
terms of the set/subset relationship to parallelograms, but in the event were
unable to do so. These three issues constituted the objectives of the present
research.

Methodology
We undertook a study with six. 13-year old Logo-experienced pupils. Our
experimental methodology consisted of the following research instruments all
of which were piloted and appropriately modified prior to the main study:-

a pre-test consisting of an audio-recorded semi-structured interview,
including some written responses, to probe pupils' conceptions of
parallelograms, rectangles and squares;

a structured set of Logo based tasks, some to be attempted on the
computer and some off the computer;

a post-test, again consisting of an audio-recorded semi-structured
interview, including written responses, to investigate what pupils had taken
away from the experimental work, and in particular whether there were any
changes in their conception of parallelograms, squares, rectangles etc.

The pre-test, which was administered on the day preceding the structured tasks,
sought to investigate:-

how pupils spontaneously described a parallelogram; how they would
draw one and write down a definition;

whether pupils were able to recognise correctly instances and non-
instances of parallelograms in a set of 13 shapes (including rectangles,
rhombuses and squares, as well as irregular quadrilaterals), and how they
would justify their decisions -- including convincing another pupil;

whether pupils would be able to construct a procedural description of a
parallelogram in a 'real-world' context (of walking around a path) and in the
form of a Logo program;

The structured tasks followed a similar pattern to those in our previous work --
with specific questions to be answered on and off the computer -- but with some
modifications. The pupils were given a Logo procedure for a parallelogram,
SHAPE, with the turns of the parallelogram (rather than the lengths of the sides
as previously) parameterised as follows: -

TO SHAPE :ANGLE1 :ANGLE2
FD 200 RT :ANGLEI FD 100 RT :ANGLE2
FD 200 RT :ANGLE1 FD 100 RT :ANGLE2

END
They were then asked to:

predict the screen outcome of typing SHAPE 30 150;
construct a tiling pattern on the computer using SHAPE;
draw seven different parallelograms (all with sides 200 and 100) in

different orientations (including rectangles and squares) using their SHAPE
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procedure -- rather than leaving, as we had previously done, the choice of
construction method to the pupil;

modify the SHAPE procedure to a procedure with one angle input only
(called NEWSHAPE). This aimed to see if they were aware of any necessary
relationship between ANGLE1 and ANGLE2, (i.e. that their sum must equal
180°) and, if they were, whether they could make the relationship explicit in the
procedure;

construct a procedure which would draw any parallelogram, no matter
what size or shape (called SUPERSHAPE). Such a procedure would in fact
need three inputs. In order for the pupils to reflect upon the generality of their
SUPERSHAPE procedure, we built in a communication aspect to the task: each
pupil was asked to draw any parallelogram he or she liked, label its sides and
angles, and give it to another pupil who would then try to draw the
parallelogram with his or her version of SUPERSHAPE: the final outcome to
be discussed by the two pupils.

The structured tasks were undertaken during a whole-day session in the
University computing laboratory. Data was obtained using 'dribble files' of the
pupils' work, the researchers' notes, and the written work of the pupils.

The post-test was administered immediately following the structured tasks and
was designed to probe pupils' conceptions of the Logo procedures for
parallelograms they had constructed, whether the understandings they had
developed during the tasks had affected their view of the ,nature of
parallelograms and, in particular, their (possibly new) classification of
rectangles, squares and rhombuses with respect to the set/subset relationship
with parallelograms. The pupils were given the following procedure:

TO SUPERSHAPE :SEDE1 :SIDE2 :ANGLE
FD :SIDE1 RT :ANGLE FD :SIDE2 RT 180 - :ANGLE
FD :SIDE1 RT :ANGLE FD :SIDE2 RT 180 - :ANGLE

END
They were:-

asked to describe what shapes SUPERSHAPE would draw with different
inputs, justify their descriptions and draw, in particular, what SUPERSHAPE
100 240 would produce;

asked if and how SUPERSHAPE could draw rectangles, squares and
rhombuses;

given exactly the same recognition task as in the pre-test; that is, asked to
pick out instances and non-instances of parallelograms in a set of 13 shapes,
giving reasons for their choices;

finally, asked whether all the instances of parallelograms in the
recognition task could be drawn with SUPERSHAPE, and whether they could
use SUPERSHAPE to draw shapes that were not parallelograms.
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Findings
We concentrate on three areas of interest which emerged from analysis of the
data: the ways in which the pupils defined a parallelogram and how this
definition interacted with their activity, the relationship between visual and
symbolic representations, and the pupils' initial and final conceptions of the
relationship between set and subset.

Pupils' definitions of a parallelogram
In the questions on the pre-test designed to investigate spontaneous descriptions
of a parallelogram, all the pupils drew what can be termed a prototype
parallelogram; that is, a parallelograin with a pair of horizontal sides usually
leaning to the right. Their definitions of a parallelogram were all declarative,
based on the equality of sides and angles. There was, however, an assumption
that a parallelogram had to be 'slanted'. This was either stated explicitly in the
definition of a parallelogram: for example Gail wrote 'The opposit (sic) sides
and angles are equal. It is slanting'. Alternatively, it emerged later during the
recognition task, when a rectangle was rejected as an instance of a
parallelogram: for example, Lyndsey stated 'The angles are not meant to be 90
-- a parallelogram is a twisted square or rectangle....it's meant to be squashed'.

This throws light on pupils' perception of definitions and their ability to use
them -- and in particular, the frequent mismatch between pupils' formal
definitions and their intuitions. Thus Lyndsey's formal definition was 'all sides
are equal, opposite angles are equal', yet her intuitive definition was 'it's either
a rectangle or a square squashed'. Similarly, Adam knew at a formal level that
parallelograms have two equal and opposite sides and angles, but excluded
rectangles and squares which had sides which were horizontal/vertical. He
decided however, that the square that was tilted over was a parallelogram,
presumably because it displayed 'slantiness'. Matthew was more aware of this
confusion and refused to answer whether squares and rectangles were
parallelograms -- saying "They're not parallelograms because of the right
angles. But I'm not sure (it looks like one)! ".

The relationship between visual and symbolic representations
a) Concerning explicit geometric attributes: When asked to draw the

figure (away from the computer) that would be produced for SHAPE 30 150,
all the pupils drew a parallelogram, although there was some confusion in the
labelling of the angles (similar to that reported in the previous study) and in the
orientation of the shape. In justifying why a parallelogram was the outcome, the
answers made general references to a parallelogram's properties (for example
opposite sides being equal) without any explicit reference to the features of the
code relating to these geometric properties. Thus there was, at this stage, little
evidence of synthesis of the visual and symbolic. For example, Gail drew and
labelled her. ,parallelogram correctly, but when asked to write a procedure
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which would produce a given shape, she inserted the inputs the wrong way
round.

We noted in the post -test a tendency towards a more precise definition of
relationships; for example, while pretest definitions tended to involve 'slanting'
or 'squashed' squares, post-test responses focused rather more on the features of
the parallelogram which had been explicitly discriminated during the activity
(such as the equality of alternate turns in SUPERSHAPE). We noted an
increased readiness to discriminate at the symbolic level, rather than only the
visual. For,example, on the post-test (but not on the pretest), Lyndsey and
Simon both pointed to the code to justify.their responses.

b) Concerning implicit geometric relationships: Despite the confusions
exhibited in the pretest over whether rectangles were parallelograms or not, all
the pupils found no problem in using SHAPE correctly to draw rectangles (i.e.
by using 90 90 as inputs). Additionally, all the pupils were successful in
drawing the seven parallelograms with appropriate inputs to SHAPE (i.e. inputs
whose sum was 180). However, when subsequently they were asked to
construct NEWSHAPE with only one angle input, their lack of awareness of the
relationship was very apparent. Lyndsey, for example, was completely baffled:
when challenged to explain how she had obtained the correct inputs in the
previous question, she replied: "I took the angle and doubled it, subtracted from
360, and halved it to get the other input". She could not convert her complicated
procedure for calculation into a formal relationship which could be used in
NEWSHAPE. In contrast, Gail used the same, calculating procedure but did
manage to formalise it by writing on paper, RT (360 - :ANGLE * 2)/2 which
she then 'tidied up' to RT 180 - :ANGLE on the computer.

In fact both these girls and a third -- Emma -- used two pieces of information
about parallelograms which they considered as flowing from their definition
(i.e. the sum of the angles was 360, and opposite angles were equal). They were
so busy doing these calculations -- which worked, of course -- that they did not
reflect on the values of the two inputs or see the simple relationship between
them. An intervention was required at this stage, merely to provoke the pupils
to take another look:

Researcher:"Can you see any connection between the inputs to SHAPE?"
Lyndsey: (immediately) "Oh ... they add up to 180."

However, the understanding generated by this intervention turned out to be only
transitory. Lyndsey subsequently wrote:

TO NEWS RAPE :ANGLE
FD 200 RT :ANGLE FD 100 RT :ANGLE 180
FD 200 RT :ANGLE FD 100 RT :ANGLE - 180

END
Thus: she made a common error in converting' 'they add up to 180' into
mathematical language. However, when she tried out NEWSHAPE on the
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computer,- itdid not produce a parallelogram. She then debugged her
procedure visually -- i.e. she saw that she should type LT rather than RT after
the FD 100 command, and produced the following workable procedure:

TO NEWSHAPE :ANGLE
FD 200 RT :ANGLE FD 100 LT :ANGLE - 180
FD 200 RT :ANGLE FD 100 LT :ANGLE - 180

END
Thus there was no ultimate synthesis between the ordinary language to describe
the relationship between the two inputs, the Logo code and the visual outcome --
on this occasion the computer allowed her to circumvent an explicit symbolic
generalisation. Lyndsey had not really grasped the geometric relationship, as
was evident in her post-test where she again used her previous calculation to
find the second turn. Similarly Gail, despite deriving the relationship correctly
within NEWSHAPE, seemed to lose sight of it when she came to use
NEWSHAPE in subsequent work -- trying inputs of 70 and then 120 to create a
parallelogram whose first internal angle was 70°. This data throws light on the
cyclical nature of the UDGS model we have proposed elsewhere (Hoyles & Noss
1988) concerning the way in which, during the use of a procedure which has
first been constructed, attention shifts away from the symbolic and towards the
visual. Thus the symbolic relationship was made explicit during the
construction of NEWSHAPE, but when the procedure became a tool, the
consequences of this relationship were ignored.

The work of these three girls contrasted with Adam. The girls all worked in
direct mode on the computer, stamping the procedure on the screen, typing ar
interface and stamping another procedure. Adam (and the other two boys)
worked all the time in the editor. He constructed NEWSHAPE correctly, but
chose the wrong size of input for the shapes required -- he always chose the
complementary input in NEWSHAPE -- e.g. 30 when NEWSHAPE 150 was
required. Thus he focussed on the symbolic code of his programme, and had
not integrated its components and sequence with effects on visual outcome. This
highlights a further difficulty in switching from the computer to pencil-and-
paper -- the latter really had no real payoff for the pupil.

Overall, there was therefore evidence of synthesis between the visual and
symbolic representations at the level of definition of a parallelogram -- that is,
how the geometric attributes of the parallelogram in terms of equality of
opposite sides and angles were reflected in the. Logo code; but not at the level of
geometric relationships inherent within the construction of the parallelogram.

The relationship between subset and set
One way in which we were able to gain insight into the way in which the idea of
parallelogram.was conceived, was by probing the extent to which pupils viewed
special cases such as rhombuses, rectangles and squares (in various
orientations).
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a) Rectangles and squares: As we mentioned above, all the pupils in the
pre-test were confused as to whether or not rectangles and squares were
parallelograms. Despite this, none of them found any problem with
immediately using SHAPE for producing rectangles. Thus they were prepared
to see that the general procedure SHAPE would produce rectangles as special
cases (when the inputs were both 90), even though they did not acknowledge
rectangles as instances of parallelograms. After the experimental phase, five
out of the six pupils were willing to see rectangles as parallelograms i.e. they
were willing to reject -- albeit tentatively -- their intuitive ideas and those
features of their prototype parallelogram which were not necessary.

For example, with reference to a rectangle, , Lyndsey said: "It is because
opposite angles are the same and opposite sides are the same, and that is what a
parallelogram is. Before I said a parallelogram is not a square or a rectangle. I
still see that is sort of right, but now I see it doesn't have to be squashed." Simon
would not commit himself: "Well it can but -- I can't -- I don't -- I don't actually
think it's a parallelogram. It can be if -- working it out the way that you do on
the computer. It's like er... I'll put in various angles for the SUPERSHAPE -- so
it can make one of those (i.e. a rectangle) out of a parallelogram....But I don't
actually think it's a parallelogram....I think it's a rectangle."

b) Rhombuses: In the pre-test recognition task au me pupils identified the
rhombus as an instance of a parallelogram. In the experimental phase they drew
rhombuses correctly, but in the post-test five of them gave 90 as the only
possibility for the angle input to SUPERSHAPE (while the inputs to the two
sides were correctly given equal values). It was apparent that they were unclear
as to the variants and invariants of the rhombus's geometric attributes.
Interestingly enough, it seemed that they thought rhombuses had turns of 90°,
yet did not refuse to designate a rhombus as a parallelogram -- which
contrasted with their professed intuitive definitions (which explicitly excluded
right angles). We conjecture that the focus here was on the lengths, not the
angles. Adam was the only exception: he had a precise defmition of a rhombus
which related it specifically to a parallelogram as well as a square: "A rhombus
is a square parallelogram".

Conclusions
We are able to conclude that the mismatch between the pupils' fuzzy and
intuitive ideas of a parallelogram and their formalised definitions identified in
the pretest, was at least partially resolved as a result of participation in the
experiment: we conjecture that using the formal code helped to discriminate the
significant features of a parallelogram. As far as the relationship between the
turns is concerned, the pupils were able to make it explicit when requested, but
it is far from clear how far they saw the functionality of the generalisation thus
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gained, or were able to keep the relationship in mind when the, procedure was
used as a module in a larger project.

A related aspect is the clarification of the set/subset relationship. There was
some evidence that the experience of confronting the relationship between
parallelogram and rectangles (by using and generalising the given procedures)
did have the effect of introducing uncertainty into some, of the pupils'
conceptions. We hypothesise that the initial confusion displayed by the pupils
might arise from the fact that pupils intuitively know that (apples) is a subset of.
{fruit }. This is different from the situation involving rectangles and
parallelograms: a slightly deformed rectangle is very much like a rectangle --
and not far off being a typical parallelogram. The important relationships
change from those between the angles to the size of the angle. As far as
rhombuses were concerned, pupils initially saw them as tilted squares and
defined them as parallelograms in contrast to horizontally oriented squares,
which were excluded. We conjecture that in this case, the essential intuitive
feature of parallelograms -- their 'slantiness' -- was crucial. This initial
conception of rhombuses persisted in the post-test.

We conclude by making three further points. Firstly, we found that our
interpretations were handicapped by not having the backup of longitudinal
data, and indeed not having a close relationship with the children (this situation
was quite different from that in our earlier work). Secondly, we noticed that the
rather directed nature of the tasks resulted in: i. some differences in approach
from other studies we have undertaken, (for example, we noted very few
instances of pupils using the computer as scaffolding presumably because
insufficient scope was allowed for experimentation) and ii. the danger that
pupils almost inevitably produce a result, but without necessarily understanding
how their actions led to this result. Thirdly, 5/6 pupils in the post-test, in
answering a question in which they are asked to pick a shape which they know is
a parallelogram and write down a Logo procedure for it, wrote a procedure in
direct mode. We interpret this finding as suggesting that the idea of
SUPERSHAPE was not a functional tool for them. Although they were
prepared to use the procedure when they were asked to do so explicitly by the
researchers, they reverted to direct drive at the earliest opportunity. Finally, we
noted in passing that the two boys in the study were completely prepared to
ignore the finer points of the visual outcome of their procedures -- a finding
which contrasted strongly with that of the girls.
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One mathematics teacher

Barbara Jaworski - Open University - U.K.

Nature and purpose of the study

This in-depth study of one teacher is part of a wider study
of a number of teachers which aims to explore their
mathematics teaching in all of its facets, including:

* their beliefs1about mathematics, cognition, teaching and
learning;

* their ways of interacting with pupils in the classroom;
* their devising and presentation of activities for pupils;
* their classroom organisation and management;
a their assessment and evaluation of pupils mathematical

learning;
* their assessment and evaluation of their own work.

Its purpose is to find out more about what mathematics
teaching implies and involves, and perhaps about how
teaching can, be more closely related to the learning of the
pupils. I present only one teacher, Clare. in this report
because it would be impossible to do justice to more than
one in the space and time available, and because an
understanding of the study as a whole depends upon an
appreciation of the nature and depth of the data collected.

Methodology and data

Clare was involved in the second phase of the project. The
methodology here is substantially that of Case study form of
a substantially ethnographic nature with participant
observation and some interviewing as discussed in Stenhouse
(11 The first phase had been one of exploring what might be
involved in in-depth research into teachers' classroom
practice in mathematics and of evolving a methodology. Two
teachers were involved. The developing methodology was then
employed with another two teachers in the second phase.
This involved me, the researcher, in:

1) Discussion with the teacher about her lesson intentions.
2) Participant-observation of a lesson and recording by

hand-written field notes.
3) Audio recording of aspects of certain lessons.
4) Video recording of aspects of certain lessons.
5) Discussion with the teacher after a lesson about what had

occurred, her own perceptions of it and her comments on
the researcher's perceptions of it.

6) Obtaining written comments from the teacher about audio
or video material from her classroom, and talking with
her about aspects of this material.

7) Discussions with the teacher about mathematics teaching
generally, about issues with which she was concerned and
about her own students and their learning.
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8) Conversations with some of the teacher's students.
9) Eliciting students' attitudes and opinions through

interviews and questionnaires.
10) Talking with the teacher and her colleagues about their

teaching, sometimes with video recordings of certain of
their classrooms as a stimulus.

Qualitative data was obtained in various forms: field notes;
audio and video recordings. from the classroom and transcripts
of these; audio recordings and transcripts of conversations
between teacher and researcher: audio recordings and
transcripts of pupil interviews: questionnaires from puPi.A.s:
video recordings and transcripts of teacher group discussion.

Circumstances particular to research with Clare

Clare, who had been teaching for about seven years, was a
competenOgkeecher who was recognised conventionally as being
successful. She taught mathematics in a comprehensive school
of 12 -18 year old pupils. Most observation and discussion
concerned one mixed ability class of 24 fourth-year pupils
(aged 15) who remained in this class for all of their lessons.
Another of Clare's classes was also observed and discussed and
all of her classes completed a prepared questionaire.
Classroom observations occurred once or twice per week over
two and a half terms. Discussions were fitted in before and
after lessons and at specially arranged times outside school
hours. As a result of all of this I built up a mental picture
of Clare as a mathematics teacher which I have tried to
express and defend with reference to the data which I
collected.

Beliefs behind and implications of this methodology

It is not possible to know objectively either what occurs in
a lesson or the reasons for it as all observation involves
interpretation. To speak rationally about what occurred and
why, the researcher needs not only to observe the event but
to get as'close as possible to understanding the teacher's
perception of the event. This involves a dilemma:

In understanding the teacher's perception. the researcher
needs to act as distancer, helping the teacher to separate
her reflective self from her active self (Schon [21) in an
effort to analyse better her. actions and thinking in the
classroom. This analysis requires self-awareness.
self-honesty and analytical persistence on the part of the
teacher, and the researcher can encourage these by asking
appropriate questions, urging further consideration and
offering support and encouragement. The act of distancing
is best possible when the agent is separate from involvement
in the action and thinking; thus the teacher, being
intimately involved, finds it hard to be the distancing
agent for herself. The researcher begins the act in this
separated position, but the very nature of her intention in
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undertaking the act, which is to get closer to the thinking
of the teacher, draws her into the web and reduces her
distancing capabilities.

Thus the researcher has to be careful with interpretations
which are based on the teacher's perceived perceptions. From
a distance she may be misinterpreting the teacher's words.
but as she becomes closer in understanding to the teacher
she may lose the 'ability to encourage the teacher to
question her own interpretations. The analysis which follows
must be viewed in the light of these remarks.

Analysis

It needs to be said that the form of this analysis was not
obvious and the doing of it was not easy,. I wanted firstly
to characterise Clare as a mathematics telieher, and secondly
to produce a characterisation that was in same sense
generalisable. I wrote down many attributes and many
descriptive categories. I tried to'substantiate my
desctiptions with events and quotations. I found my
categorisations indistinct and elusive.

For example when working at the board on some aspect of
fractions. Clare said to the class. "Anyone who's ahead of
this, try to think how to explain the repetition in 1/7".
In one respect this is classroom management. Discussion was
on points of difficulty which some students were
experiencing while others seemed to understand and were
possibly getting bored. This comment enabled them to make
progress while Clare gave her attention to the others. In
another respect it shows the level of challenge in her
instructions to students - "try to think how to explain " .was
typical Clare-speak, an it was to her credit that students
seemed not to be worried by such complex instructions.

One brief comment being so rich in interpretation
illustrates the complexity of the task. I decided that I was
trying to distinguish too finely and that what I needed in
the first instance was a much broader brush so I settled on
broader categories which seemed to encapsulate. Clare's
qualities. Due to limitations of space I have chosen to
concentrate on Just three of these which have emerged
strongly from my observations of and discussions with her. I
was influenced by the reporting and analysis of data in
Fensham et al (31.

1. Classroom management and management of learning

Clare is. strongly, even forcefully, in charge of what
happens in her classroom. Her expectations are bothexplicit
and implicit in what occurs. Students respond favourably to
this, recognising its value while. ruefully admitting that
they might choose it to be otherwise. She is most, concerned
with encouraging students to think about what they are doing
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and why they are doing it and to organise their own work and
thinking.
Some quotations from her instructions in the classroom:

"Today we'll work on KMP (their maths scheme). We'll have
two lessons on this, so plan your work."

"How many people have calculators? It's a good idea to
bring them to all lessons"

"Think! no. I mean a hands-down think."

"In order to get this off the ground, can we have Just one
person speaking at a time. Because if you think that what
you have to say is valuable then it is probably going to be
valuable to everyone."

A boy complains, rather agressively, that he doesn't know
what to do.- Referring to the task set, he says "I've done
this before." Clare replies, "I don't ask you to waste your
time - don't treat it like that".

At the end of a class proJect on 'pentominoes' she told the
class that they should hand in their written report after
the next maths lesson. "So,". she said. "this is the lesson
to see me and ask me about it". She went on. "But if you
want a solution. I'm not going to give you one. There's
nothing wrong with handing in a proJect where you haven't
found an answer. If I tell you, then you won't get that
kick from having found it yourself"

In many of the lessons which I observed, students chose
where to sit and with whom, but occasionally Clare directed
them into specific positions or, groups. "Jerome, come and
sit here please. I want you to work on your own today,
'cause I want to find out what you think about ....".
Daisy. will you work with John and Stephen today please.
because I think you're all thinking along the same lines
...". She disagreed strongly with one of her colleagues who
claimed that friendship groups were the best form of
organisation as they provided a secure and supporting
environment in which students could work. Clare believed
that students needed to work in different situations and
with different people for stimulation and to gain a variety
of experiences rather than always relying on a protective
situation. I observed that relationships within the class
were mostly good and that students did not in general seem
to mind with whom they worked.

In one project where students were gathering information
about population distributions she said. "All groups ..
pool what you've found and decide what questions you want to
ask next". And on another occasion. again to the whole
class. "In about 3 minutes I want some feedback from you.
Just think about what you're going to say."
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2. Sensitivity to students and their individual needs

Although her decisiveness and personality occasionally
verged on the formidable. Clare was also caring and
sensitive to students' individual needs and characteristics.
She was never unapproachable, and students tended to treat
her with a familiar respect. She maintained an informal and
often Jocular relationship with them.

She wrote for me on one occasion. 'The students and I know
each other well. There is trust and humour on all sides and
they understand that in the Joyful melee of mixed-ability
teaching, I will sometimes be lost for words, in a muddle,
badly tuned, or Just plain wrong.'

Much of our recorded dialogue consists of her, comments on
'particular students: Daisy and Naomi who are bright but
stuck in a rut and need to be stimulated: Jacques, who is
bright but in trying to cut corners does not do full Justice
to his thinking; John who has'maverick ideas' but has
difficulty in following them up: Annette who is totally
lacking in confidence and needs to experience some success;
Frances who has such overwhelming difficulties that Clare
despairs of ever being able to help her; Jerome who is lazy
and will rarely make any effort. I have pages and pages of
notes on these and others, and feel that I know them well
myself through Clare's descriptions. After a particular
interview which I had with two students. Clare reported one
of them as asking in a wondering tone, "How does she know so
much about us?"

It is typical of Clare to get excited about or to agonise
over particular students at length. For example sho said on
one occasion, "I have a student in the foundation year who
has a slightly embarrassing stutter and really can't read.
or write, very well. She is one of the brightest, most
creative. mathematicians in that group. When I said
brightest, that's probably not what you could measure in a
test, it's not like, that sort of bright, but she's one that
I can rely on to make the classroom come alive, and work
...yes, in an illuminating sense. And she comas up with
ideas the sort of person who will invent things. r mean.
she invented this morning the prime factor rectangle and the
factor prime rectangle. She said. 'Is it alright for me to
invent a prime factor rectangle?' and I said, 'If you can
tell me what it is, yes.' You know she's Just so sort of
open and creative about the subject.

In our discussion after one lesson. I had asked Clare if she
had noticed a girl. Virginia, sitting with her hand up for
quite some time. She replied, qYes, she did. It was quite a
good lesson for Virginia because she doesn't alwaystake any
part at all. and she was actually working very well this
morning." When Clare later listened to the audio recording
of the lesson and the discussion, she wrote as a comment: 'I
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sidestepped Barbara's comment about V's hand up by saying
she was working well. If she was waiting for me with her
hand up she wasn't working, and it was my fault! Gojiltl! I

hadn't really been on the lookout for hands up during the
lesson. I hope I haven't let Virginia down.'

3. ChallenainQ the students mathematically

Clare expressed on many occasions her struggle with helping
students to develop their own mathematical ideas and
concepts rather than, Just accepting mathematics from her.

"Naomi .. she's very bright.. but she couldn't divide 6 by
4/5. I wasn't going to tell her! But I couldn't think of
how to tell her how to divide fractions."

When Frances and Joanne had come up with different results.
Clare said to each of them in turn, "You try to convince
Frances that you're right. You try to convince Joanne that
You're right.

In response to a conjecture made by a pair of girls she
asked, "What are you going to do to find out if that's
true?"

Many of Clare's lessons involved project work in which
students were asked to investigate some given situtation. In
one example they explored the under and over patterns in a
Piece of string when it was dropped onto the table, and
whether, by pulling both ends it was possible to form a
knot. Clare was very aware of her propensity to 'push arm
'prod' and felt that when she had particular ideas or result
in her head,- she was likely consciously or unconsciously to
push students towards them. She said after one lesson on
Knots, "The way I work with these things is that if I know
too much about where it's going, given that I do prod and
guide. I may well prod and guide people into directions
which may not be most fruitful ones, may not be the most
interesting ones to them." In trying to expand on this and
Justify her thinking and motivation she later wrote, "It
sounds as if 'anything goes', but I only feel 'anything
within certain limits goes'. I will know the limits when I
reach them."

We watched a piece of video together of Clare working with
one student, Annette, on a workcard on area. The sound was
particularly poor and Clare stopped the tape at one point to
explain, "This is a lovely conversation - it's all about
chopping up. It's an L shape, chopped into two rectangles,
and she actually realises why she has to chop it into two
rectangles. At one point she told me why to chop it into
two rectangles to get the figure. and then when I ask her to
do it, she does it totally differently. Instead of having

1
the L-shape chopped in o two rectangles, she actually makes
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it into a bigger rectangle. So I think. Oh Hell, but we'll
take her through this, and she get's there! She can't tell
me what she is going to do, but then she does it exactly
right - it's ever so exciting!"

Triangulation - students comments

There has often been a considerable period of time between
the collection of the data and analysis of it. Very often
in the analysis questions arise where it would have been
nice to obtain students' comments. For example, regarding
the lesson where Virginia had her hand up for a period of
time without Clare noticing, it may have been helpful to
have asked Virginia about her feelings and reactions to
being ignored. However, apart fromoccasional conversations
with students which happened spontaneously. all data from
students came from arranged interviews and questionaires at
the end of my period of work with Clare.

Some of the interviews produced unsolicited comments about
Clare's way of working which very strongly supported what I
was seeing and what Clare claimed to be her purpose. For
example in response to the question: "What do you think
about the way Clare runs lessons? About the organisation
and the things she expects you to do or not do?", one boy
replied:

"Well she's basically very strict. It's a funny sort of
strictness because it's not sit down and quietness and this.
because she allows a certain amount of leeway. 'So I mean
she will let you sit with your friends when you start off,
and chat, but sooner or later she decides, you know. if it's
good for you. I think that Clare wants you to get the best
of your capabilities, that she is continually pushing you,
in some ways in most ways it's good, but I have found once
or twice that it tends to worry you, you know you haven't
done enough, or you are not doing enough, and you have all
the other subJects to worry about."

Another student said, "She seems to be pushing you along,
you know, because I think she sees your capabilities more
than you do."

At another time, in reply to a question about similarities
and differences between maths and other subJects a student
said.."I think in Maths, especially with Clare people do
more work in the class as a whole. She is a much.stricter
teacher and she really pushes you forward, to get your goal,
to the height of your ability. So I think a lot of people
are doing quite well in maths because she is always there to
give you that extra push and makes you go further.

Again on the subJect of how maths is different, one student
said, "I think maths is different because everybody sort of
works ... with people talking I find it much harder to
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work." I then asked. "Is that something to do with the way
Clare runs the lessons, or is it Just because it's maths?".
and the reply was. "Yes. I think it is because of Clare, you
know, if they talk they get into trouble, or get moved.

Conclusions ,

Care needs to be taken in generalising from interpretations
of qualitative data of this sort (Stenhouse (1] ; Cohen &
Manion (4]). However, when I have applied the same level of
analysis to the second teacher of this phase of my study I
hope to be able to make links between the findings on the
two teachers and possibly link back to the two teachers in
the first phase. I should like to explore whether the
differing emphases of the teachers correspond to differences
in their classrooms, whether common beliefs or strategies
correspond to similar effeots, whether there is any
agreement that particular ways of working promote
'successful mathematical learning' and how that is seen to
be defined, whether the ways the teachers see themselves
developing have any common features. I hope to form some
conjectures and questions which I can take into the third
phase for testing.. Ultimately.I should like to be able to
make some general statements related to the facets listed on
Page one.

I expect the third phase of the study to be different to the
first two in the following respects:

1) I wishto enter the third phase with well defined
questions which I want to pursue.

2) I hope to modify my methodology to improve on
deficiencies in the second phase. For example I hope to
interview students closer to the event to allow more
student input at the fine level of data collection.

3) I wish to explore how my own beliefs affect the
teacher's responses and actions. Both of the teachers in
the second phase have indicated words or opinions of
mine which have influenced their thinking and I should
like to pursue this more overtly.

4) Related to (3). The relationship between teacher and
researcher has been fruitful according to teachers in
the second phase. I should like to look deeper into the
implications of this relationship.
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LEARNING THE STRUCTURE OF ALGEBRAIC EXPRESSIONS AND EQUATIONS

Carolin Kieran
Universite'etu Quebec a Montreal

bjtract. This theoretical paper begins with a brief
discussion of the meaning of "structure", within the
context of the early part of the high school algebra
course. Students' difficulties with learning the
structural aspects of algebra are shown by examples from .

several cognitively-oriented, research studies. The paper

concludes with some suggestions for algebra instruction.

The teaching of high, school algebra usually begins with the topics:
variables, simplification of algebraic expressions, equations in one

unknown, and equation solving. Students' difficulties with these topics

have been found to center on (a) the meaning of letters, (b) the shift to a
set of conventions different froM those used in arithmetic, and (c) the

recognition and use of structure. Since the first two of these
difficulties have already been well documented in the research literature
(e.g., Booth, 1981, 1984; Kuchemann, 1981; Matz, 1979), this paper reviews
some of the research literature related to the third one--recognition and

use of structure. Because of space constraints, it is not possible to
review in this paper all of the pertinent literature; a more complete
description can be found in Kieran (in press b).

Structure

The term °structure° is used in many different contexts throughout

this paper. In a general sense, we refer to "arithmetic/algebraic
ttructure° as a system comprising a set of numbers/numerical variables,
some operation(s), and the properties of the operation(s). However, we

also refer In this paper to particular aspects of structure, such as the
structure of expressions and the structure of equations.

'Structure° is defined by Webster to mean "the arrangement of the
parts in a whole, the aggregate of elements of an entity in their
relationships to each other.' The former deals with arrangement or
disposition; the latter with relationships. When we speak of the structure
of an algebraic or arithmetic expression, we mean both (a) the surface
structure, which refers to the given form or disposition of the terms and
operations, subJect when disposed sequentially to the constraints of the
order of operations; and also (b) the systemic structure (systemic in the
sense of relating to the mathematical system from which it inherits
properties), which refers to the properties,of the operations such as
commutativity and associativity, and the relationships between the

operations such as distributivity. The systemic structure of algebraic
expressions permits us to express, for example, 3(x. + 2) + 5
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equivalently as 5 + 3(x +.2) or as 3x + 11 and so on. Thus, the

structure of the expression 3(x +. 2) + 5 comprises the surface
structure, that is, the given ensemble of terms and operations--in this
case, the multiplication of 3 by x + 2, followed by the addition of 5--
along with the systemic structure, that is, the equivalent forms of the
expression according to the properties of the given operations.

The structure of an equation incorporates the characteristics of the
structure of expressions, for an equation relates two expressions. Thus,

the surface structure of an equation comprises the given terms and
operations of the left- and right-hand expressions, as well as the equal
sign denoting the equality of the two expressions. Similarly, the systemic
structure of an equation includes the equivalent forms of the two given

expressions. For example, the equation 3(x + 2) + 5 = 4x/2 7 can

be re-expressed as 3x + 11 = ax- 7, wherein each expression is
independently transformed (i.e., simplified). Because of the equality
relationship inherent in an equation, the left-hand expression continues to
be equivalent to the right-hand'expression after such systemic
transformations of one or both expressions. The resulting equation is also

equivalent to the given equation. However, the systemic structure of an
equation comprises much more than the systemic structure of expressions.
Because of the equality relationship and system properties such as the
addition property of equality ('lf.equals are added to eqUals, the sums are
equal",), the equation as a whole can be transformed into equivalent
equations without necessarily replacing one or both expressions by

equivalent ones. For example, the equation Sx + 11 = 2x 7 is

equivalent to the equation 3x + 11 + 7 = 2x - 7 + 7, even though the
left-hand expression 3x + 11 is not equivalent to 3x + 11 + 7, nor is
the right -hand expression 2x -'7 equivalent to 2x - 7 + 7. Similarly,

the equation 5x + 6 = 10 is equivalent to 5x = 10 - 6, according to.
the properties of our arithmetic/algebraic system, wherein an addition can
be expressed-as a subtraction. The system properties of equality can be
used to generate an infinite set of equations, in fact, a class of.
equivalent equations. It is this particular aspect of the systemic
structure of equations--thatis, the potential of generating equivalent
equations by means of properties related to (a) performing the same
operation on both sides of an equation, and (b) the alternate ways of
expressing additions and multiplications In terms of subtractions and
divisions--that is so crucial to the process of solving equations.

Variables

High school algebra usually starts with instruction in the concept of
variable--a prerequisite to understanding the systemic structure of
algebraic expressions and equations. In elementary school, children have

alfeady seen placeholders in "open sentences" (sometimes called missing
addend problems), and have used letters in formulas such as the area of a

rectangle. However, their past experiences cannot easily be related to. the
many uses of variable to which they are exposed in high school algebra. In

a large-scale study of some of the various ways in which high school
students use algebraic letters, carried out by Kuchemann (1978, 1981), it
was found that most students could not cope consistently with questions
that required the use of a letter as a specific unknown. The findings of a

follow-up study, the Strategies and Errors in Secondary Mathematics (SESM)
project, reported by Booth (144h gest that some of the difficulty
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which students have in interpreting letters as representing generalized
numbers may be related to a 'cognitive readiness° factor: The lower
ability mathematical groups were unable to evolve in their interpretation
of letters as did the middle and top ability groups. Another finding of
the SESH study was that, even though beginning algebra students are
initially unreceptive to the idea of unclosed, non-numerical answers (such
as x + 3), instruction can be quite effective in changing their thinking in
this regard.

Algebraic Expressions

After being introduced to the notion of using letters to represent
numbers, the next topic in the algebra programme is usually operating with
these letters in the context of simplifying algebraic expressions (e.g.,

Zx + 3x). Chalouh and Herscovics (in press) carried out a teaching
experiment (six children, 12 to 13 years of age) In which they investigated
the cognitive obstacles involved in constructing meaning for algebraic
expressions when using a geometric approach. In designing their teaching
experiment, they took into consideration the work.of Collis (1974) and of
Davis (1975). concerning the incongruenCies between arithmetic and algebra,
the consequent inability of novice algebra students to regard algebraic
expressions as legitimate answers, and the difficulties they experience
with algebraic concatenation. Chalouh and Herscovics used an instructional
sequence that included arrays of dots, line segments, and areas of
rectangles. The lessons permitted the children to develop meaning for
expressions such as 2A 5A,' but most of the children were not able
to interpret this expression as 7g, This study showed that
constructing meaning for algebraic expressions does not necessarily lead to
spontaneous development of meaning for the simplification of algebraic
expressions.

While the above study emphasized,children's construction of meaning
for.the form of algebraic expressions, other studies (e.g., Greeno, 1982)
have investigated children's structural knowledge of these expressions as
evidenced by the processes they use to simplify them. Greeno (1980) his
suggested that the process of solving problems involves apprehending the
structure of relations in the problem. To test this idea, he carried out a
study with beginning algebra students on tasks involving algebraic
expressions (Greeno, 1982). He found that their performance, appeared to be
quite haphazard, for a while at least. Their procedures seemed to be
fraught with unsystematic errors, thus indicating an absence of knowledge
of the structural features of algebra. Their confusion was evident in the
way that they partitioned algebraic expressions Into component parts.
According to Greeno, beginning algebra students are not consistent in their
approach. to testing conditions before performing some operation, nor with
the process of performing the operations. For example, they might simplify
4(6x - + 5x as 4(6x.- 3y. + 5x) on one occasion, but
do something else on another occasion.

Algebraic Equations and Equation Solving

students' difficulties with apprehending the structure of algebraic
expressions carry over into their work with the next topic of the
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programme, algebraic equations (e.g., 2x + 3 = 7). One of the findings
of the Algebra Learning Prciject (Wagner, Rachlin, & Jensen, 1984) was that
algebra students have trouble dealing with multiterm expressions as a
single unit: Students appeared not to perceive that the basic surface

structure of, for example, 4(2r + 1) + 7 = 35, was the same as for

+ 7 = 35.

A recent study with a teaching component (Thompson & Thompson, 1987)
has shown that instruction can improve students'. ability to recognize the
form or surface structure of an algebraic equation. These researchers

designed a teaching experiment involving two instructional formats:
algebraic equation notation and expression trees displayed on a computer

screen. After instruction., their eight 7th-grade subjects 02-year-olds)
did not overgeneralize rules, nor did they fall to adhere to the structure

of expressions. They, also developed a general notion of variable as a
placeholder within a structure and the view that the variable could be
replaced by anything: a number, another letter, or an expression.

A teaching experiment carried out by Herscovics and Kieran (1980)
emphasized another aspect of the structure of an algebraic equation: the

equivalence of left- and right-hand expressions. In a series of individtial

sessions, six 7th-grade and 8th-grade children were guided In constructing
meaning for equations in which each expression did not contain simply a
numerical. term (i.e., for equations with the surface structure

ax f b = cx t d). The instructional sequence began with an extension
of the notion'of arithmetic equality to include equalities with more than
one numerical term on the right side and then went on to hiding the numbers
of these °arithmetic identities.° This approach was found to be accessible
to these algebra novices and effective in expanding their view of the equal
sign from.a "do something signal° (Behr, Eriwanger, & Nichols, 1976) to
that of a symbol relating the value of the left-hand expression with that

of the right-hand expression (Kieran, 1981).

Many studies have focused on students' knowledge of parsing (i.e.,
recognition of the surface structure of an expression or equation). Davis

(1975), Davis, Jockusch, and McKnight (1978), Matz (1979), Greeno (1982),
and others have all shown that beginning algebra students have enormous
difficulties in Imposing structure on expressions involving various
combinations of operations, numerical terms, and literal terms. Parsing

errors, such as simplifying 39x - 4 to 35x, have been documented in

several studies. These same errors have been found to persist among
college students (e..g., Carry, Lewis, & Bernard, 1980).

Another facet of arithmetic/algebraic structure concerns the
relationship between the operations of addition and subtraction (and

between multiplication and division) and the equivalent expressions of
these relationships (e.g., 3 + 4 = 7 and its equivalent expression
3 = 7 4). Knowing these relationships and their written forms could
conceivably enable a student to see that x + 4 7 and x = 7 - 4 are
equivalent and that they have the same solution. However, such may not be

the case: A 'group of six twelve-year-old beginning algebra students showed
considerable confusion over equations involving the addition-subtraction
relationship (Kieran, 1984)'. This was seen with two of their errors: the

Redistribution error and the Switching Addends error. In the Switching

Addend6 error, x + a = b was considered to have the same solution as
x = a + b; in the Redistribution error, x + a = b was considered to have
the same solution asx+a-o=b+ c. In this last equation, the

109



- 437 -

subtraction of c on the left was balanced by the addition of c on The

right.

Another aspect of structural knowledge considered to be important in

equation solving involves knowledge of equivalence constraints. Greeno
(1982) has pointed out that algebra novices lack knowledge of the
constraints which determine whether transformations are permissible. For

example; they do not know how to show that an incorrect solution is wrong,
except to re-solve the given equation. They do not seem to be aware that
an incorrect solution,. when substituted into an Incorrectly transformed

. equation will yield different values for the left and right sides of the
equation. Nor do they realize that it is only the correct solution which
will yield equivalent values for the two expressions in any equation of the
equation-solving chain.

Students' understanding of equation structure, as related to the
solution of an equation, was also investigated in the Kieran study (1984).
The six novices were presented with pairs of equations and were asked
whether or not the equations had the same solution, without actually
solving the equations. The method the students used was to compare the two
equations, attempting to pick out what did not match and, on the basis of
their arithmetical knowledge, to determine whether the mismatches were
legal or not. In scanning the equation-pairs for similarities and
differences, the novices followed a left-to-right search pattern and rarely
seemed to be able to take in all of the differences between the equations.
This inability of beginning algebra students to discriminate the essential
features of equations has important consequences for learning theory.

Another large body of research exists in which the focus has been on
the procedures used by novices in the solving of equations. Some of these
studies have included different °concrete° modeling techniques as a method
of helping students construct meaning for certain forms of equations and
for the operations carried out on these equations. One such study was
carried out by O'Brien (1980) who worked with two groups of twenty-three
3rd-year high school students. One group was taught meaning for equations
and for the manipulations performed on equations by means of concrete
materials (bundles of counters and colored cubes). The manipulations
involved removing objects from both sides or adding objects to both sides
of the concretely-modeled equation. The second group was taught meaning
for manipulations using a generalization of the part-whole strategy (i.e.,
the relationship. between addition and subtraction--2 + 3 = 5 compared with
2 = 5 - 3), often called the °Change SIde°-"Change Sign° rule. O'Brien
found that the second group became more proficient equation solvers than
the concrete materials group.

Concrete models have also been used in teaching experiments by Filloy
and Rojano (1985a, 1985b) in studies aimed at helping students create
meaning for equations of the type Ax t B = Cx and for the algebraic
operations used in solving these equations. Their main approach was a
geometric one, although they also used the balance model in same of their
studies. Teaching interviews with three classes of 12- and 13-year-olds
who already knew how to solve equations of the types x t A = B and

Ax t B = C showed that the use of these two concrete models (the balance
and the area models) did not significantly increase most students' ability
to operate at the symbolic level with equations haVing two occurrences of
the unknown. The well known equation-solving-error of combining constants
and coefficients was also seen in this study, in particular with the use of
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the geometric model. Students tended to fixate on the model and seemed

unable to apply previous equation-solving knowledge to the simplified

equations of the instructional sequence.

A final study to be discussed in this section on equation solving Is

one which did not use concrete models but rather drew on the numerical

approach used in an earlier teaching experiment by Herscovics and Kieran

(1980). At the outset of the study, Kieran (in press a) pretested six

average-ability 12-year-olds who had not had any previous algebra

instruction. She found that the students showed two different
equation-solving preferenceS, both based on their elementary school

experience with 'open sentences.' Some preferred to solve the simple

equations of the pretest by means of arithmetic methods such as
substitution and known number facts; others preferred inversing, that is,

solving 2x + 5 = 13 by subtracting 5 and then dividing by 2 (and in fact
seemed unaware of the potential of substitution as an equation-solving

procedure). Those who preferred substitution viewed the letter in an

equation as representing a number In a balanced equality relationship;

those who preferred inversing viewed the letter as having no meaning until

Its value was found by means of certain transposing operations. (See

Kieran, 1983, for more details on these students' views of algebraic

letters.) In the teaching experiment on equation solving which followed,

the procedure of performing the same operation on both sides of an

algebraic equation was carried out first on arithmetic equalities (e.g.,

.10 + 7 = 17), and then on the algebraic equations built from these

arithmetic equalities (e.g., x + 7 = 17):
10 + 7 = 17 x + 7 = 17

10 + 7 - 7 = 17 - 7 ; x + 7 - 7 = 17 - 7.

Kieran found that those students who had initially preferred inversing

(i.e., transposing) were in general unable to make sense of the solving

procedure being taught, that is, performing the same operation on both

sides of an algebraic equation. This suggests that, although inversing is
considered by many mathematics educators to be a shortened version of the

procedure of performing the same operation on both sides, these two

procedures may be perceived quite differently by beginning algebra

students. The procedure of performing the same operation on both sides of

an equation emphaSizes the symmetry of equations; this emphasis is quite

absent in the use of the procedure of inversing. Although this
investigation involved only six case studies of beginning algebra learners,

the findings suggest that there may not be Just one path which is followed

in the learning of algebra. Some learners focus initially on the given

surface operations and on the relationship of equality between left- and

right-hand expressions of an equation; they may be more open to the solving

procedure of performing the same operation on both sides. Other learners

focus immediately on transposing and on the inverses of the given surface

operations; they may prefer to solve equations, not by the
same-operation-to-both-sides method, but by extending their transposing

method.

Concluding Remarks

The early learning of algebra involves grappling with the topics of

variables, algebraic expressions, equations, and equation solving. The

research discussed In this paper has shown that students.have difficulty
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with recognizing and using the structure of Introductory algebra. It has

been found that some aspects of this difficulty are amenable to

instruction; others less so. One particularly troublesome area-concerns
the understanding of a particular feature of algebraic structure--the

equality relationship between left- and right-hand expressions of

equations. This relationship is a cornerstone of much'of the algebra

Instruction currently taking place. It is the basis of many of the

concrete models used to represent equations and equation-solvingtAt is.

also an integral part of the symmetric procedure of performing the.Same

operation on both sides of the equation. However, it hasj:sen foUnd that

for some students, teaching methods based on this aspect of the structure

.
of equations often do not succeed. For these students, who tend to view

the right side of an equation as the answer and who prefer to solve

equations by transposing, the equation is simply not seen as a baianCe

between right and left sides, nor as a structure that'is operated on

symmetrically. That understanding seems clearly to be absent. These same

students also appear to have difficulty in formalizing even such simple

relationships as the equivalent forms of addition and subtraction. Another

finding of many-of the studies discussed in this paper concerns the

inability of beginning algebra students to 'see° the-surface structure of

algebraic expressions which contain various combinations of operations and

literal terms. This difficulty seems to continue throughout the algebra

career of many students, as evidenced by errors such as reducing

(A + b + c)/(a + b) to 2, seen among college students. In

conclusion, many high school students appear to be experiencing serious

obstacles in their ability 'to recognize and use the structure of school

algebra. The challenge esearchers is to devise studies that will push

forward our knowledge of flow students can come to understand the structure

'of elementary algebra and' of algebraic methods.
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THE INFLUENCE OF TEACHING ON CHILDREN'S STRATEGIES

FOR SOLVING PROPORTIONAL AND INVERSELY

PROPORTIONAL WORD PROBLEMS

Wilfried Kurth, Universitit Osnabruck, W.-Germany

Prior to the teaching unit, children are left to strategies of
their own, when they try to solve proportional and inversely
proportional word problems. With the help of a test, several
succesful and error strategies were found. During the teaching
unit, children have learnt to relate word problems with the
concepts "proportion" and "inversely proportion" and to solve
them by using characteristic peculiarities of these types of
function.
In this way, the children become more succesful in general,
but the different types of error decrease to a different
extent, some don't decrease. One type of error to take an
inversely proportional problem for a proportional one - even
increases distinctly. The results of the investigation are
presented and then are tried to be interpreted.

The solution of proportional and inversely proportional word problems is

mainly taught in the seventh grade in schools of all types in the F.R.G.

(age of the pupils about 12 years). The aims of the corresponding teaching

unit are

the ability to gather from the text'whether the function is proportional

or inversely proportional (or neither)

the ability to solve the problem by-applying a procedure that corresponds

to the respective function. This procedure (e. g. the rule of three, the

method of fraction operators, fractional equations) is usually introduced

as a schematic procedure, i. e. the rules applied are presented in a

particular optical fashion.

A typical kind of problem is the missing value-problem which requires the

calculation of a forth value on the basis of three given ones.
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The cnildren already know the arithmetical operations (multiplication and

division of rational numbers) for solving proportional and inversely

proportional problems. The question is, how far this knowledge will help

pupils to succeed in working out a strategy referring to the situation

presented in the text of the excercise.

Within our investigations we are mainly engaged in finding out which

strategies and types of error are produced.by the pupils before and after

the teaching unit and how these changes can be explained.

The investigations'are composed of a preliminary test (before the teaching

unit), teaching observations in some classes, and a follow-up test identi-

cal to the first one (about 6 weeks after the teaching unit). Additionally,

we interviewed some pupils in order to get more information on their pro-

blem-solving-process. 217 pupils from 11 classes of the "Realschule" (the

secondary school within the tripartite school system of the FRG) were

involved in the investigation outlined here.

The test consists of 10 missing-value7problems (5 proportional and 5

inversely proportional). Previous investigations (Hart 1981, Karplus et al.

1983, Kurth 1987, Noelting 1980) showed that pupils adjust their strate-..

pies very much to the chosen ratios, i. e. possible calculation diffi-

culties influenced the extraction of the operations from the text of the

exercise. If the three given values a, b, c and the unknown "x" are arran-

ged in a table (M1, M2 are the two measure spaces)

M1

a b

the five following combinations of ratios are included (a, b, c, x integer):

1) c:a and b:a both integer

2) c:a integer, b:a not integer

3) c:a not integer, b:a integer

15
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4) c:a 3:2, b:a + 3:2, b<a

5) c:a, b:a both not integer, both not equal 3:2, c<a, b<a.

Each of the five combinations refers to one proportional problem (no. of

evaluation: 1-5) and one inversely proportional problem (no. of evaluation:

6-10) occuring in the test in a mixed order:

Test exercises according to the order of evaluation:

1. Out of 7 liters of milk, you can make 42 grams of butter. How many grams
of butter would you het from 21 liters?

2. Within 5 days,.a potato-chip factory uses 8 truck loads of potatoes. How
many truck loads of potatoes would the factory use within 30 days?

3. In 12 seconds, a waterpump can fill 38 liters of water into a pool. How
many liters of water can the same pump fill into the pool in 9 sec.?

4. There are 10 eggs to 8 table-spoons of milk in a pancake recipe. How
many table-spoons of milk are there to 15 eggs?

5. In 20 seconds, a computer printer prints 15 lines. How many lines does
it print in 8 seconds?

8. 4 identical pumps empty a swimming pool in 40 hours. How long would it

take 20 pumps to do so?

7. 5 identical lorries remove a heap of rubble each by driving 12 times.
How many would each of 15 lorries have to drive to remove the same heap?

8. A water supply lasts for 8 days if you daily take 18 liters. How many
liters may be taken daily, if the water supply is to last for 4 days?

9. For 8 sheep, a feed supply lasts 15 days. How long would the same feed
supply last for 12 sheep?

10. A certain amount of potatoes is filled into 15 kilogram-bags. 8 bags
are filled. How many 8 kilogram-bags could have been filled using the

same amount of potatoes?

According to preliminary examinations and to investigations by Lybeck

(1978), Karplus (1983), Noelting (1980), Vergnaud (1983), pupils' success-

ful strategies can roughly be classified into the two following forms,

called the "A-Form" and "B-Form" by Lybeck:

A-Form: The children try to first establish a multiplicative relation

between a and b (according to the proportional and the inversely
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proportional coefficient respectively) and then transfer it to tne

pair (c, x).

(This strategy is called "Within strategy" by Noelting , and

"Function" by Vergnaud ).

B-Form: The children try to first establish a multiplicative-relation

between a and c (according to a scalar operator) and then transfer

At-or else the reciprocal operator with inversely proportions-to

the pair (b, x).

(This strategy is called "Between-strategy" by Noelting , and

"Scalar" by Vergnaud ).

Remarkable types of errors are:

Additive strategies (add): The pupils try to establish a relation between a

and c (similar to the B-Forml but chose an additional operator and transfer

it to the pair (b, x).

Dividend and divisor exchanged (div): The pupils exchange dividend and

divisor where a division is required.

Wrong type of function (wf): The pupils take a proportional problem for an

inversely proportional one and vice versa.

No attempt made (na): No attempt is made to solve the problem.

Results of the preliminary (p) and of the follow-up test (f) (data shown in

percentage referring to the total number of pupils (N - 217):

Proportions:

No. of evaluation

P

1

f p
2

f

3

p. f p
4

f p
5

f

Success rate 79 85 60 81 69 80 34 67 15 60

A-form 28 28 4 18 65 60 5 21 5 25

B-form 50 55 53 61 4 17 23 37 8 26

ad 1 - 4 7 3 18 3 13 3

div - 1 2 5 4 10 13 14 12

wf - 3 2 1 5 3 3 2 6

n a 3 4 8 3 5 2 20 6 28 7
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Preliminary test:

On the one hand, it becomes clear that with increasing "unfavourable" ratios

the success rate in solving the problem is decreasing and the application of

additive strategies as well as not attempting the problem is rising.

No. 2 and 3 show clearly that the children look for'integral ratios when

chosing their strategies. No. 1 shows that given an integer A- and 1:4ratio,

pupils prefer the B-strategy.

Most of the B-strategies inezcercise 4 (21 %) also show that pupils are

inclined to use correct additive strategies: The ratio c:a - 3:2 allows the

application of the special strategy f(c) f(a+a/2) f(a)+f(a)/2 - b+b/2

which utilizes the additivity of the proportional function f.

The interviews have shown that the successful application of the B-form in
.

no. 1 and 2, too, is based on the concept of multiplication as a short form

of writing an addition. The children try to find out, how many times the

magnitude a goes into b, get the scalar operator, and transpose it in M2,

or they even add a+a+... until they get to b, then count the number of

times they have added a and so add c+c+...

If this concept is no longer applicable, pupils switch to the wrong strategy

"add", which only reflects the monotonous character of the proportionality.

Difficulties occur when pupils try to apply the A-form in no. 4 and 5: here,

too, a confined concept of multiplication and division becomes cleat

manifesting itself according to the following rule ihich was valid during

elementary school education: "You can only divide the larger number by the
.

smaller one".

Fischbein (1985) showed, that it is difficult for pupils to detach

themselves from these "Implicit Primitive Models".

Follow-up test:

The still high percentage of "div"-mistakes in no. 4 And 5 is due to pupils'

failure who learnt a procedure based on the A-strategy. "Implicit Models" of

division could not be reduced in this case.

The type of error "add" hardly occurs because the pupils rarely did any

addition or subtraction during the teaching unit.
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Results of the preliminary (p) and of the follow-up test (f):

Inversely proportions:

No. of evaluation

P

8

f P

7

f p

8

f p

9

f p

10

f

Success rate 39 66 54 69 38 47 26 55 56 60

A-form 10 32 28 35 38 35 22 39 54 49
B-form 26 24 25 33 2 9 3 15 2 9

ad 2 - 4 1 5 1 20 4 4 2

div _ _ _ _ _ _ _ _ _ _

wf 8 14 9 11 27 42 9 18 2 21
n a 4 3 13 7 11 5 27 11 27 10

Preliminary test:

There is 'no tendency towards a decrease in the success rate with increasing

"unfavourable" ratios of numbers. This was not expected anyway because the

A-strategy - in this case beginning with a multiplication which is followed

by a division with an integer result - is always a strategy that avoids

fractional numbers. Yet, pupils like to use the B-strategy even with an

integer B-ratio (no. 6,7). "Correct" additive strategies as used in

proportions (f(x+x+...+x) - f(x)+f(x)+...f(x)) do not occur in inversely

proportions. The fact that pupils still try to use them, partly explains why

the percentage of "wf"-mistakes with inversely proportions is higher than

with proportions. To what extent the problems for pupils are influenced by

the ratios, is indicated by the extremely high percentage of the

"wf"-mistake in no. 8, for, here, the integer A-ratio (b:a - 18:6) provokes

a proportional A-strategy. In order to exclude the possibility that other

factors - e.. g. text variables - caused the mistake, the texts of no. 8 and

10 were exchanged by keeping the numbers in another investigation. The

results were similar.

In no. 9, the high percentage of "add"-mistakes with low percentage of

A-strategies at the same time, is caused by the presented situation. The

intermediate result ab belonging to the A-strategy is more difficult to
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interpret in this problem than in the other four inversely proportional

problems. Switching to a B-sfrategy with "unfavourable" ratios of numbers

given - leads to the "add"-mistake.

Follow-up test:

The most remarkable result of this test is the distinct increase in

"wf"-mistakes when compared to the preliminary test. Based on the inter-

views, we are able to name an important factor for this result: In the

preliminary test, no pupil has as yet determined a pattern to solve the

problems but each new problem requires pupils to find a way to solve it,

i. e. the pupil has to form hypotheses for his solving process from the

concrete context of the problem, to calculate and interpret partial results

thus, to test his hypotheses and thereby to solve the problem sequentially

and within close analysis of the concrete context.

This situation differs considerably from the one in the follow-up test: The

pupil has learnt to relate the excercises with the concepts "proportion" and

"inversely proportion". After having decided on the type of function he is

now capable of using the respective procedure mechanically like a computer

programme. His input, i. e. his analysis of the context of the problem, is

confined to the decision on the type of function. Especially here lies the

danger.

Let us have a look at no. 8 for example:

A water supply lasts for 8 days if you daily take 18 titers. How many

liters may be taken daily, if the water supply is to last for 4 days?

In many interviews, the type of function was determined wrongly: "The more

days, the more water will be used. That is: proportional".

There is, indeed, a proportional relation as just mentioned in the first

clause of many inverselyproportional problems. Pupils chose their procedure

on the basis of this relation. The procedure then runs without further text

analysis and often, too, without applying the final result to the content

once again. Thus, there is no protection against a wrongly determined Aype

of function.

The previous explantations have shown possible dangers of automating the

solving of word problems to a large extent.
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That part of the solution which cannot be automated is reduced to a minimum.

This is a correct and possible way to solve wordproblems, but for the

children, it is a new and unfamiliar way to work with concepts like

"function", "proportions", "inversely proportions" and to solve problems by

applying procedures which are based on characteristics of these types of

function.

Obviously, teaching does not take this aspect into account sufficiently.
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CONSTRUCTING BRIDGES
FROM INTRINSIC TO CARTESIAN GEOMETRY

Chronis Kynigos
Institute of Education University of London

Abstract. Turtle geometry, apart from being defined as intrinsic, has a special
characteristic; it invites children to identify with the turtle and thus form a body
syntonic thinking "schema", to drive it on the screen to make figures and shapes.
This is a report of on - going case study research, whose aim is to investigate the
potential use of this "schema" by young children in order to develop understandings
of Cartesian geometry. Three pairs of 11 -12 year old children with 50 -60 hours of
experience with turtle geometry participated in the study.The results presented here
highlight the children's conflicts arising from their attempts to use a coordinate
method to control the turtle. A model of a synthesis of their insights into coordinate
notions is proposed, together with a model of the schema they seem to have built
during their experience with turtle geometry prior to the study. Some examples are
then given of the children's dissociations from their "intrinsic schema" and their
subsequent understandings of specific coordinate notions.

The theoretical framework of the study is based on the role of Logo and turtle geometry within a

specific view of mathematics education; i.e. learning mathematics is seen as an on - going re -

organisation of personal experience, rather than an effort to describe some ontological reality. The

child learns mathematics by building with elements which it can find in its own experience (Von

Glaserfeld, 1984). Papert (1972) uses words like "doing" and "owning" Mathematics to stress the

dynamic and active involvement of the child. Hoyles and Noss (1987) use the notion of "functional

mathematical activity", i.e. the child using mathematical ideas and concepts as tools .to solve

problems in situations which are personally meaningful. Logo is seen by more and more educators

as a powerful tool for creating educational environments in accordance with the above perspective.

Turtle geometry, a very important part of Logo, has a particular characteristic; when children tt

turtle geometry, they can identify with the turtle, and therefore use personal experience of bodily

motion to think about the shapes and figures they want to make (Papert 1980, Lawler 1985).

My approach to this thinking "schema" which the children seem to adopt for doing turtle geometry

(called "intrinsic thinking" by Papert and Lawler), does no,./ pre - assume the nature of the
geometrical, notions used when the schema is employed to drive the turtle on the screen. It is
infomed, rather, by research into the structuring of intuitive geometrical knowledge, i.e. the way

children link very simple sets or "units" of such knowledge to the turtle's actions. They acquire

these "units" from very early personal experience of movement in space. DiSessa might call these

units "phenomenological primitives", although his study was in the context of physics (diSessa

1982). Lawler puts forward the notion of a "microview" to talk about domain specific fragments of

personal experience. He contends that the personal geometry "microview" is "ancestral" to the
intrinsic geometry "microview ".
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However, the nature of the geometrical notions underlying turtle geometry is characterised by

Papert as intrinsic, i.e. that turtle geometry belongs to the family of the differential geometrical

systems where growth is described by what happens at the growing tip (Papert 1980). This

geometry is contrasted to the "logical" euclidean geometry of theorems and proofs and to the

"analytical" cartesian geometry where changes of state are caused by location descriptions. Papert

discusses the different nature of these geometrical systems and argues that it is mathematically

important for children to understand the relations between them. As part of a wider issue of the

potential of intrinsic thinking for the learning of geometry (Kynigos 1987a), this study addresses

the problem of whether it is possible for children to use this powerful thinking tool which they

adopt naturally from doing turtle geometry, to develop an understanding of the cartesian
geometrical system and its relationship with the intrinsic. For convenience this thinking schema will

be refered to as the "intrinsic schema".

OBJECTIVES,

The aim of the study was to investigate in detail different aspects of the same problem i.e. the extent

to which it is possible for children to use their intrinsic schema for developing an understanding of

coordinate geometry. The method employed involved the ecouraging of the development of three

separate learning paths, each employing a different conceptual base for describing the plane (fig.1),

thus building a different "bridge" from intrinsic to cartesian geometry. All the paths consisted of

three categories of activities (fig. 1) with the aim of:

Category 1) illuminating the process by which the children developed an understanding of a
systematic description of the plane (fig. 1 - A, B, C).

Category 2) illuminating the nature of children's understandings of the absolute coordinate and

heading systems, while using a non - intrinsic method to change the turtle state in the coordinate
plane (fig. 1 - D, E).

Category 3) investigating if and how they used their intrinsic schema to relate intrinsic and

coordinate notions while choosing a method of changing the turtle state in order to make
measurements on the coordinate plane ("T.C.P." microworld, fig. 1, F).

MEJEQ12

Three pairs of 12 year - old children participated in the study, one for each path (fig. 1). Prior to the

study the children had had around 60 hours of experience with turtle geometry (they did ngi know

about the SET- commands) in an informal, investigation - type classroom setting as members of a

Logo club of 20 children in total. The research was carried out during school hours in a small

"research room" and each pair of children participated in three 90 to 120 minute sessions, one for

each category of activities, in a total period of no more than a week for each pair. Soft and hard

copies were produced of everything that the children said and typed. The researcher also kept what
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they wrote on paper, produced graphics screen - dumps, and took notes on anything of importance

which would escape the rest of the data

A rather detailed analysis of the data was required in order to understand the children's thinking

processes,esses, especially at times of conflict created by environments which embedded notions which

were "dissonant" to their hitherto experience. A substantial component of the analysis therefore is

in the form of "significant" episodes during the children's activities illustrating the nature of their

insights or confusions related to the research issues.

RESULTS,

The results presented here concentrate on the activities of the children during the category 2 tasks

which involved taking the turtle to specific points on the coordinate plane (shown on the screen by

a cross sign) with the only available means being the coordinate (SET) commands (fig. 1, D). For

the category 2 and 3 activities (fig. 1 D, E, F), the researcher imposed position changes dependent

on the turtle's heading, i.e. the turtle could only move towards where it was heading.

As a result of the analysis of the data, a model of a "coordinate schema" is being developed, which

synthesises the children's insights into the notions involved in the coordinate controlling of the

turtle. The model consists of heading and position change schemas, which the children seemed to

be in the process of building as a result of dissociating froin intrinsic notions. This process of

dissociating from the intrinsic schema and developing another, seemed to throw light on specific

notions the children had aparently built for controlling the turtle during their 15 - month' experience

with turtle geometry, thus clarifying components of the intrinsic schema itself, a model of which is

also proposed in the study.

During an earlier part of the analysis (Kynigos 1987, b), examples were given of one pair of
children (pair 3, fig.l) dissociating from a turtle "action - quantity" schema (e.g. "move steps, turn

degrees") while having insights into important factors for changing the heading and the position in

the coordinate plane. This report presents examples of how the other two pairs of children seemed

to make dissociations from "action - quantity" and sequentiality notions in "intrinsic" heading and

position changes in order to solve the tasks. The presentation concentrates on the children's

understandings of a turtle state - change caused by describing the state (e.g. the meaning of the

command SETH 180), rather than a "sequential" change from the present to the end state (e.g. the

meaning of RT 180). The children's abandonning of their "action - quantity" schema is also
illustrated in favour of state changes caused by descriptions of absolute directions and locations.

The following episode illustrates Maria and Korina's first insight into the coordinate method of

changing the turtle's heading which seemed to involve a dissociation from their familiar "action -
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quantity" schema and the use of an absolute direction system to describe the new heading. The first

discussion concerning the method of changing the turtle's heading arose in the context of a mistake

during the task to take the turtle at point 80 -60, i.e. Maria's aparent unclear distinction between the

two states and the nature of their metric systems (degrees and length units), resulting in her typing

in SETH and then counting on the x - axis for an 80 input to SETH (point at 80 -60). The process

of discussing the meaning of the SETH command and its input in order to understand the turtle's

resulting heading of 80, seemed to favour the development of an awareness of an external direction

as the determinant of heading change. The following extract illustrates the aparent carry - over of

this awareness to the next task (turtle at -90 0, heading 270, point at -90 -40, fig. 2):

(discussion on how to take the turtle from heading (1) to heading (2))

M: "SETH..."
K: "To show where its

looking, yes..." (meaning of SETH)
M: "SETH..."
K: "How much...wait...

to look downwards..." (meaning of the input)
M: "SETH 180."

(1)

Figure 2
M. and K.: Discussing the meaning of SETH

(2)

X (-90 -40)

However, it seems that this insight in dissociating heading change from action - quantity, did not
incorporate a dissociation of what has been referred to as the "sequentiality schema", i.e. the notion

the children seem to have built from their turtle geometry experience, that a heading change is

caused by a turtle action from its previous heading to the new one.This can be illustrated by the

children's attempt to take the turtle on the -100 90 point (fig. 3), a task in which the axes were

hidden. Having passed the point by typing SETY 100, the children were trying to make the turtle

face downwards, i.e. change its heading from 0 to 180. Although Maria's verbal expression of her

plan seemed to indicate an understanding of relating heading change to an absolute direction
("...this is 0 now, if we turn and we say SETH 180..."), she had-not really seen the absolute

direction as the only necessary determinant of the change. This became aparent in her attempt to

make the turtle face downwards from a heading of -20 (she had typed SETH -20 confusing degrees

with turtle steps - fig. 3)

(Discussing how to change the turtle's heading from (1) to (2)) (1)

M: "So we should tell it to go to 180. X
Therefore, 200. Let's see..." (she types SETH 200)) (2)

Figure 3
M. and K.: Discussing how to make the turtle face downwards
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It is suggested that Maria's mind focussed on the rotational "distance" from -20 degrees to 180,

imposing an input which was dependent on the previous heading. This sequentiality schema

seemed to have a very strong resistance to change in the children's mind; after discussing the
outcome and trying out different inputs to SETH, Maria did seem to have an insight into the

absolute nature of this method of heading change:

M: "I.e. however much it is, let's say 5 degrees further, it's not relevant, let's say we mustn't add
it to..."

K: "We should put it normally (she means just the end heading) whatever it is."
M: "Good. Now let's tell her... 10 distance."

Inspite of the different context (change of position) it was seen as important to include the last

phrase of this dialogue, which seems to indicate that although Maria had just had an insight into the

notion of end direction being the important factor in changing the heading, she did not carry that

notion to the change of the turtle's position from (0 100) to (0 90), focussing on the distance from

100 to 90. In fact, the children had already discussed changing the position before turning the

turtle, imposing a distance notion in their plan (fig. 4):

(Discussing how to take the turtle from position' (1) to position (2))

M: "No, it's too much."
K: "Yes... a bit less."
M: "Em... minus 10. Minus 20, therefore 80."
K: "Yes, I'said 80 at the beginning too."
M: "O.K., -20 then."

(1)
X (2)

(-10090)

Figure 4
M. and K.: Changing the turtle's position

The children seemed to be talking about the turtle steps from the 100 to the 80 point, i.e. the

distance from the present position to the position of change. They also seemed to impose a "reverse

action" notion, of "undoing" an aparent forward 100 action by subtracting the distance.

The strength of this "relative distance" (as opposed to distance from the origin) schema is illustrated

by the children's persistence to use it in. their subsequent activities: at first they typed in -20,

forgetting about the SETY command. After discussing the error message from the SETY -20

command, which led to a turning of the turtle to face downwards, and although Maria had had an

insight into the notion of the end direction being the important factor in changing the heading (fig.

2), she did not carry that notion to the change of the turtle's position from (0 100) to (0 90):
Focussing on the distance from 100 to 90, she typed in SETY 10, and after the result on the screen,

SETY -10, aparently thinking she had failed to include a "reverse action" element

127



455

From the resulting 0 -10 pOsition, the children turned the turtle to face upwards again and took it to

(0 80); saying forward 80 and typing SETY 80. Only then, did one of them (Korina) show some

indication of dissociating from the relative distance notion, expressing an opposition to a proposed

SETY 10 command in the attempt to move from 0 80 to 0 90:

M: "Now. SET...Y... 10."
K: "10? I say, let's do... 90."

However; the children did not explicitly use the notion of position change caused by giving the end

position as an input, in any of the subsequent tacks in this session.

Natassa and Ioanna, however, were more explicit in their attempts to make sense of position
changes. They met their first difficulties in trying to move the turtle from a -100.0 to a -110 0

position in order to decide whether the value of 100 for the x coordinate was the correct one (the

axes were invisible, the point was at -100 90, fig. 5). In their efforts to explain why their first

attempt (SETX -10) did not work while their second (SETX -110) did, the children constructed a

"theory" for the meaning of the number of the x value.

(explaining why SETH -110 worked while SETH -10 did not,
in taking the turtle from position (1) to position (2))

(-100 90)

I: "...we did it again from 0 fill 110 X
and it came out."

N: "...we can't do 10 because we've
done 100 already. Plus 10 we wan
to do... 110." (2)

I: "She doesn't go... because we've 4
passed 10." (1)

Figure 5
Isl. and Changing the turtle's position

Ionima seemed to suggest.two ways of interpreting the meaning of the x value: firstly, the value

represents the distance. from the origin, and therefore the SETX command operates in such
distances, and secondly it represents a name for a place ("...we've past - the place - 10."). Natassa

seemed to take on board the "distance from the origin" theory. Notice how she used a specific way

to talk about a number when it represented an x value (by using the word "do" in front of such
numbers), and seemed 'to implicitly contrast it to the normal meaning of number ("... plus 10, we

want to do... 110).
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DISCUSSION,

In their attempts to control the turtle, the children seemed to dissociate from their intrinsic schema

and develop new schemas for heading and position changes. Not surprisingly, this development

was not uniform across pairs, or across children individually. The children seemed to have
"insights" into parts of the coordinate method at various times during the activities but no child

seemed to explicitly synthesise the notions into a concise method of state change. The model for

the "coordinate schema" which is being developed, therefore, is only a synthesis of the children's

insights into the notions involved in controlling the turtle in the coordinate plane.

The study provides a description of the process by which the children aparently began to build a

mental schema with dynamic characteristics, i.e. one which would enable them to make controlled

changes in the coordinate plane. The schema seemed to emerge in the children's minds from it's

antithesis to the intrinsic schema, caused by the coordinate nature of the category 2 tasks (fig. 1). It

is interesting to consider the relationship between these two schemas and in particular that they both

seemed to emerge (at different times) in the children's minds as mental tools for making changes in

particular environments. Although this does not come as a surprise in a turtle geometric
environment, it is not a self - evident characteristic of the learning of coordinate geometry. In the

category activities, for example, where the children could choose the method for controlling the

turtle (fig. 1), they seemed to use the necessary coordinate notions (e.g. locating and naming
methods) either uy employing their intrinsic schema (e.g. FD DISTANCE 70 -70: "go forward the

distance-from where you are to point 70 -70"), gr_their coordinate schema (e.g. SETPOS 70 -70:

"pur yourself on point 70 -70"). It seems therefore interesting to consider the potential of the
"T.C.P." microworld of the category 3 activities (fig. 1) in providing the children with the
opportunity of a dynamic interplay between the two geometrical systems by means of the option to

employ a method to make changes, based on concepts belonging to either system.
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CONCEPTS IN SECONDARY MATHEMATICS IN BOTSWANA
Hilda Lea

University of Botswana

Abstract

Four tests from "Concepts in. Secondary Mathematics and Science"
tests were used on a sample of secondary school pupils in

Botswana. The aims were to ascertain the levels of
understanding of pupils in Forms 2, 3 and 4 and to identify
difficulties; to compare performances of boys and girls in
Botswana; and to attempt to make some comparison with available
results for some questions.on the same tests carried out in
England. It was found that many pupils were still at the
concrete operations stage in secondary school; that there was
a small difference between performance of girls and boys, with
a trend in favour of boys; and that there was some relationship
between the performance of pupils in Botswana and England.

INTRODUCTION

The CSMS tests were very carefully constructed, with questions chosen to

examine a variety of "concepts.in an unfamiliar setting, so that hierarchies

of understanding could be established, and an investigation of children's

difficulties made. This should give insight into the way children learn

mathematics Hart (1981). Levels of questions linked to Piaget's stage

theory, were used as a framework to describe pupil's understanding. Four

levels were identified. Level 1 shows an understanding of basic concepts.

Level 2 shows the application of these concepts. Level 3 shows the

beginning of abstraction. Level 4 uses abstract reasoning as well as the

application of knowledge to the solution of problems. In Piagetian terms it

could be said that items at Levels 1 and 2 require early concrete

operational thought, Level'3 late concrete, and Level 4 early formal

operational thought.

Achievement Of Girls And Boys

In Botswana, girls constitute 60% of the junior secondary school population.

Form 4 is selective and girls constitute 40% of the senior secondary school

enrolment. This suggests that boys are already showing greater ability.

Boys perform better. in 0 level mathematics and more boys achieve higher
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placings in the junior and senior maths contests. Kahn (1981) showed that

in Botswana, educational achievement due to sex difference is not

significant at primary level but is more pronounced at Form 3, and that.

boys perform better than girls in all subjects except Setswana.

In Britain, APU (1980) showed that even though all girls do mathematics up '.

to 16 years, they are not as successful as boys, and only 39% of the top

10% in 0 level were girls. Boys were shown to be ahead in descriptive

geometry. In USA, NAEP (1980) found that at 14. years of age.boys and girls

did equally well, but at 17 years fewer girls study maths and those who do

have a lower achievement. Fennema (1978) found that boys were better at

spatial visualisation. The generalisation of many studies in Russia also

showed more mathematical ability for boys. Schildkemp-Kundiger (1982) on

aninterhational maths study, found some.sex related differences in maths

achievement in a wide range of countries of different economic levels.

Comparison Of Results In Botswana And England

As mathematics fs:more culture free than most subjects, it should be

possible to make some comparisons. Ifshould be borne in mind that in

Botswana, the medium of instruction from Standard 4 in primary school is

English; in Botswana the JC examination is taken at the end of year 3,

whereas in England there is no national examination till the end of year 5;

and in both countries-0 level is taken by the most'able, approximately 11%

inBotswana and 20% in England.

METHOD

Sample

Ten.schools were chosen at random, and 15 boys and 15 girls were selected

at random from each Form used. At the time of the tests about 35% of the

primary school population went on to secondary school and approximately 11%

of.the primary intake proceeded to Form 4. In England the sample was mostly

taken from Comprehensive school's with a large ability range. A quarter of

each year group was used", the sample being representative of the normal

distribution of IQ in the British child population. The population of

England to Botswana is in the-ratio 50 : 1, and though the sample in England

is larger, the-Botswana sample covered a much 'greater percentage of the

school population.
3.1
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Procedure

Forms 2, 3 and 4 took the same tests in October each year. Papers were

returned to the University for marking and analysis. Answers were coded, 1

for correct answers, 0 for completely wrong or missing answers, and 2-9

depending on the type of mistake made. The marking system was that shown

in Hart and Johnson (1980).

RESULTS

Table 1

Summary of results showing the percentage of pupils giving correct answers.

Botswana England

Form 2 Form 3 Form 4 Form 2 Form 3 Form 4

MeaSurement Level 1

2

3

4

71

50

33

16

71

56

41

16

85

65

42

86

76

48

n 160 126 444 373

Reflection Level 1 58.2 66.3. 84.8 79** 80.9 84.7.

& Rotation
2 58.1 59.0 83.6 52.6 57.6 64.8

3 29.6 31.8 59.6 35.6 41.6 47.0

4 39.0 42.6 59.9 25.1 27.4 35.6

5 17.7 22.5 35.0 12.3 16.0 20.2

105 147 66 293. 449 284

Algebra Level 1 92.5 92.5 86.7, '92.5

2 69.7 78.6 . 51.7 65.4

3 39.9 44.9 26.5 43.8

4 10.8 18.4 7.6 14.7

n 221 176 1128 961

Graphs Level 1' 59.5 55.8 78.1 67.3 63.3 69.6

2 40.6 37.0 '59.1 17.0 18.3 21.9

3 30.3 28.7 68.0 .21.6 19.0 30.0

n 215 115 68 459 755 584
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Table 2

Results of girls and boys in Forms 2, 3 and 4 showing the percentage of

pupils giving correct responses.

Test Level Form 2 Form 3 Form 4

Girls Boys Girls Boys Girls Boys

Measurement 1 66 77 70 74

2 45 57 53 63

3 27 39 37 44

4 20 23 23 22

n 85 75 70 56

Reflection 1 52 66 61 72 81 90

& Rotation
2 44 53 41 58 78 79

20 40* 23 42 63 , 62

4 31 47 34 47 52 67

5 9 25* 11 19 30 36

n 54 53 56 36 27 39

Graphs 1 67 67 69 50 90 72

2 35 44 34 36 57 61

3 19 28 22 23 58 62

n 85 62 68 47 21 47

*Significantat .05 level

DISCUSSION OF RESULTS

When the tests were drawn up, items were identified which had the same

level of difficulty. If 2/3 of the pupils answered an item correctly, it

was an indication of the level reached by the group. Similarly a pupil

answering 2/3 of all questions correctly at a particular level, would be

considered to have reached that level of ability. From Table 1 it would

seem that in general in secondary schools in Botswana, in Form 2, 22% give

responses classified as early formal, 11% late concrete and 37% early

concrete; in Farm 3, 26% give responses classified as early formal, 11%

late concrete and 35% early concrete; in Form 4, 35% give responses
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classified as late formal, 25% early formal and 4% late concrete. In most

cases Form 3 results were better than Form 2.' In the graphs test Form 2

results were better, probably due to the fact that this topic had just been

completed in the syllabus. From Table 2, one can compare samples of girls

and boys. There is a consistent trend in favour of boys, significant in

two cases in the Reflection and Rotation test in Form 2. This would support

research findings that in maths boys perform better in general, and

noticeably better in spatial visualisation. It is not possible to make

precise comparison between samples in Botswana and England though trends can

be identified. It must be remembered that this is a comparison between the

top third of school age children in Form 2 and,3 in Botswana, and the whole

ability range in England. Selective Form 4 in Botswana is being compared

with an all ability range in England.

Table 1 shows that in measurement, the sample of pupils in England did

noticeably better at levels j, 2 and 3. This could be partly due to the

fact that the environment of many pupils in Botswana is frequently"'

unstructured. In Reflection and Rotation, pupils in England did better at

levels 1 and 3, and pupils in Botswana performed better at levels 2, 4 and

5. In Algebra pupils in Botswana performed better at all levels. In Graphs,

pupils in England did better at level 1, but pupils in Botswana;did

noticeably better at levels 2 and 3. The fact that Botswana performance is .

relatively poorer at level 1 but relatively better at other levels, suggests

that in England pupils get a better foundation in mathematiCs at primary

'school, but at secondary school performace on average deteriorates, in

comparison to Botswana where the opposite seems generally to be true.. This

is supported by the fact that pupils in Botswana did better in Algebra at

level 1, a subject not done at primary level. It is not possible to make a

fair comparison uetween Form 4 results. One can only say that the average

performance of Form 4 pupils in Botswana (11%) is better than the average

performance of all Form 4 pupils in England.

CONCLUSION

Considering that at Independence in 1966, very few pupils in Boiswana

received secondary education, then it is clear that enormous strides have

been made since then. At present 35% of the possible school population

take the Junior Certificate examination at the end of year 3, with over 70%
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pass rate. In 0 level, results have consistently improved stice 1979 with a

pass rate of 55%, to a present pass rate of over 80%. The overall improve-

ment in results is probably due to two main factors that there are many

more good Batswana mathematics teachers in the schobls, and that the text

books widely used were written for Botswana, Lesotho and Swaziland by local

teachers and mathematics educators. Overall, evidence suggests that, in

Botswana, many pupils have difficulty with formal reasoning well into

junior secondary school. The implication for teaching is that, if pupils

can only function effectively at the concrete operations stage, materials

must be presented in a way which is directly related to everyday situations,

otherwise they may be reduced to learning algorithms with little under-

standing. Many senior secondary pupils do not function consistently at the

level of formal reasoning, so it is important to relate some of that work

also to everyday situations.

In a mixed ability class pupils will be at different stages in making the

transition from concrete to formal operations, so weaker pupils may not yet

be able to do questions with very abstract reasoning, yet more difficult

questions must be given to the better pupils if they are to reach their full

potential. Results suggest that boys do perform better than girls in

mathematics. That this should be so in Botswana is interesting, because in

a country as new as this there is not likely to be a tradition of stereotyping

related to role or to subject. Social and cultural factors could play some

part. There are also possible explanations in terms of brain laterality,

genetic or hormonal influences. One aspect of the research was to ascertain

whether pupils in. Botswana performed very differently from those in England.

It was found that on the whole they did not. They made the same types of

errors and levels of cognition measured by the achievement of the pupils,

was comparable. It would be interesting to compare results in CSMS tests

with those from other countries.
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A DEVELOPMENTAL MODEL OF A FIRST LEVEL OF COMPETENCY IN PROCEDURAL THINKINO IN

L000 : "Meybe werenot expert, but merecompetent"

TAMARA LEMERISE

UNIVERSITE DU QUEBEC A MONTREAL

Abstract. The present paper addresses the problem of the kind of competence a child
between 9 and 11 can develop in .procedural thinking applied to structural.
programming in Logo. A present trend in the literature tends to demonstrate that
children of this age can not master structural programming. There is some truth to
that, but nontheless we can still find a body of evidence showing that they do
acquired a certain competence in the domain. We propose here a model describing a
first level of competency that can be acquired by children of this age. The
proposed model tries to capture the path followed by these children in their
progressive use and conceptualisation of five of the main carecteristics of the Logo
procedure. The following goals may be served in presenting our model : illustrate
children's hebilety to develop some competence even if they do not become expert;
propose some guidelines to teachers or researchers interested in the promotion of
such competency; and finally argue that it is possible to obtain evidence of
children's competency in this domain at age levels younger that of secondary school
children.

Dans le domains des recherches at applications Logo on observe presentment une derive de

rinteret vers le niveau secondaire (12 ens et plus). Durant lee sept derniereS annees de la

decennie 80, Logo s'est laborieusement taille une place au niveau primaire (6 oil ens).

Plusieurs chercheurs et enseignants ont deploye de grands efforts pour introdut re phi losophie et

langage Logo dens les classes du 2 ieme cycle du primaire (4 -S -6 ieme armee) et mime, a

l'occasion, dens celles du premier cycle ( I -2-3 ieme armee). Nombre d'etudes ont tents soit

d'enelyser 'impact du travail en Logo sur le developpement des enfants, soit dlen decrire les

conditions ideales Cepplication. Aujourd'hui, c'est !implantation at revaluation du Logo au

secondaire qui semble le plus retenir 1' interat des chercheurs at des professeurs.
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A priori, ce phenomene est reconfortent et dens is logique meme des evenements. En effet, suite

a is fascinante *lode de is diffusion du Logo dans les classes du primaire , is moment est

venu, si Von veut s'essurer du meintien et du ctiveloppement de Logo dens le systeme educatif, da

poursuivre les efforts d'implantation aux niveaux scoleires plus avances. 11 y a certes eu de thus

temps des chercheurs et pedagogues qut ant oeuvre en Logo au secondaire (a titre dexemples

l'equipe de C. Hoyles et R. Noss en Angleterre, celle de J. Olive aux Etats-Unis, ou encore cells de

A.'Rouchier en France); le mouvement nest donc pas nouveau en soi, mais seulement plus

accentue aujourdhui. 11 faut toutefois souhaiter que linter& eccru pour les niveaux d'age plus

avences (12 ens et plus) ne soft pas mode a un desinteressement ou a une "develorisation" des

competences susceptibles d'être acquises en Logo par les enfants du primaire.

Que ces enfants places thnS un environnement Logo thveloppent toutes sortes de petites

competences (apprentissage dun 'engage informatique, perception nouvelle de l'erreur, vision

dynemique du concept dangle, celcul et mise en relation de dimensions, eat...) est aujourd'hui

gfineralement confirme et accepts . Toutefois, relativement aux granat canons de Logo, tels is

maitrise de is programmetion structures, is comprehension de is notion de variable ou is

manipulation de is recursion, les progres observes chez cette population as sont averts plutat

minces comperativement aux attentes (Kurland et al 1987, Blouin, Lemoyne 1987, Hillel

1984). En effet, exception faith de Is recursion gineralement reconnue difficile dames,

certain espoirs ant ate entretenus relativement ei is competence des 9-11 ens a meitriser is

programmation structures eta manipuler is variable dens certaines situations peu complexes.

Or rares sont les enfants de niveau primaire qui, meme arras deux annees de travail avec Logo,

deviennent hautement competence dens l'un ou l'autre de ces domains.

Les facteurs explicetifs les plus frequemment amenes a Vappui de ces "pauvres performances'

observees chez ces enfants sant lies tent& aux limites imposees aux conditions de travail (une

heure ou deux /semaine pour des periodes de 7,15 ou 30 semaines /armee ), tent& a is nature

du contexts pedegogique ( l'approche "projets libres" necessiterait un grand laps de temps avant

que soit assure un epprentissage reel at stable; l'approche "projets diriges" severe souvent trop

limithe pour assurer un epprentissage complet et authentique d'une habilete specifique souvent

dapendente de le maitrise d'habiletes connexes I). Un troisieme facteur, plus rererrient evoque,

est celui des obstacles epistemologiques cress par letype et le niveau des habiletes requises

pour is reussite de is thche. Si les habiletes requises sant fort complexes, ''enfant dun certain

niveau dagen'eura meme pas le bagage developpemental necessaire pour pouvoir travailler tiles

acquerir.

137



465

Le triable qua nous voulons presenter id se rattache a ce troisie.me fecteur ; pour le moment,

it ne couvre qua le seule problematique du 'ay. el4opement al" /8 =pate en progremmatia

ditestructurie. L'argument principal qua nous voulons ici promouvoir flyovers la presentation

de ce modele est qua la ''non-competence" observee chez les enfants de 9-1 1 ens, dens le domaine

de la programmation structuree, est ainsi definia a cause du modele de reference utilise pour

l'avaluer. Lorsque ce modals de reference est un modele dexpert, inutilement trap sophistique, it

masque ou &valorise toute une eerie de competences locales effectivement acquises per lee

enfants darts leur demarche progressive menant vers la maitrise de la programmation

structuree. Ce sant ces competences "pre-expertes" ou "prerequises" qua nous voulons ici

dfivoilees, afin de promouvoir une evaluation positive des progres des enfants dens le domaine de

la programmation structuree (malgre le fait qu'ils ne sent point encore experts), et de proposer

aux chercheurs at enselgnants un male dcrivent certaines stapes Importantes a trend& sur

le chemin de la maitrise definitive. Les donnees utilisees a l'appui de ce modele proviennent

dune pert des donnees deje rapportees par pertains auteurs (Noss 1985, Hillel at Semurcay,

1985), meis aussi at surtout de notre propre bang& de donnees recueillies au pours de trois

annees consecutives de travail avec une classe multiage ( 4-5- 61eme) dune vingtaine denfants.

AU SEUIL DE LA PENSEE PROCEDURALE : un modele du developoement des competences

pre-repulses a la programmation structuree

Dens un premier temps sera presentee une description sommaire dune serie d'habiletes en

pens& procedurale, jugaes Id prerequises a la maitrise de la programmation structures. Sulvre

une schematisation de la trejectoire developpementele de ces habiletes telle qu'observee chez des

sujets ages de 9 a 1 1 ens. Enfin quelques breves recommendations sont degagies pair la miss,

sur pied dun contexte de travail favorisant le developpement harmonieux, atpeut:atre moins

laborieux, de 18 pensee procedurale en programmation structures:

1 -Description des habiletes.

En Logo, l'habilete a programmer de facon structures fait appal a deux grands types dhabiletes

specifiques: l'habilete a '&6finir des procedures at l'habilete a meni,ouler des procedures.
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L'habilete a lifinir des procedures refere dabord aux competences du programmeur

selectionner eta organiser les actions Logo jugees utiles pour reproduire une forme, un effet ou

un projet donne. La miss en procedure c'est aussi l'habileta a regrouper is serie d'ections

choisies pour is representer sous un soul vocable. Ainsi, la miss en procedure ne necessite

point, du moths dens un premier temps, l'elegance ou l'economie des actions choisies, mais elle

requiert qu'un lien dequivelence proctedurele soit etabli entre le nom de la procedure et is lists

ordonnes des actions qui is composent. Due CARRE soit definie avec un repete ou par une eerie

dections a is queue leu leu importe peu dens is mesure au le programmeur peut se representer

is aerie d'actions cheque lois evoquee par sa procedure spectfique. Aussitea definie, une

procedure est aussitat appelee a etre menipulee; ainsi l'habilete a definir des procedures

appelle l'habilete a manipuler des procedures.

L'habilete A maninuier des procedures. En Logo, l'habilete A menipuler une procedure se

manifests habituellement sous l'une des quatre formes suivantes : 1) habilete a modifier une

procedure ; 2) habilete a transformer une procedure; 3) habilete A organiser entre elles plus

dune procedures; et 4) habilete 8 exporter me procedure.

1) L'habilete a modifier une procedure refere aux initiatives des programmeurs poiir spit

ajouter une commende, is modifier ou is retrancher dens une procedure deja definie. Souvent,

par exemple, les enfants vont ajouter de is couleur ( un FCC ou un FF0) dens leur procedure, ou

encore ils modifient une longueur , mieux adeptee A leur besoin du moment, ou plus simplement

encore, ils corrigent, suite a un resultat inattendu, une ou des erreurs de copie. Plus tard,

certeins definiront directement leur procedure dens l'editeur, sechent fort bien qu'ils peuvent is

modifier si le result& ne concorde pas a leur attente. L'habilete a modifier une procedure

souligne is carectere hautement plastique de l'entite procedurele.

2) L'habilete a transformer une procedure consiste a. creer une nouvelle procedure a partir

dune procedure deja existante. La nouvelle procedure se differencie souvent de is procedure

mere par des variations mineures de commandes. Par exemple, les procedures CARRE1,

CARRE2 ne sont qua des reprises egrandies ou rapetissees dun CARRE precedemment

Dans dautres ces, cast un besoin de symetrie qui est a l'origine dune transformation : telles

ces procedures miroirs qui demandent d'adepter l'orientation dun meme angle (OEIL ,

OEILDROIT; OCT000NE, OCTOOONEOAUCHE). Le transformation dune procedure se differencie

done de is modification dune procedure en ce aenere une seconds procedure . Une
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transformation de procedures augmente einsi le =bre de procedures qu'un sujet a a son actif.

Toutefois, it nest point rare qua is transformation donne lieu a des modifications de

procedures ( au niveau des noms des procedures une certain reorganisation est souvent

appliquee : CARRE 1 , CARRE2, CARRE3 ; OEILD, OEILO; des longueurs sant modifiees pour qua les

deux procedures puissant etre pairees A l'ecran : OCTOD, OCT00 ) . Plus encore, une

transformation initiale revile a plus dun apprenti-programmeur le jeu attreyent de is

transformation "a is chain" ; d'abord appliqué a un premier ensemble (OCTO OCTOD,

OCT00 PETTITOCTOD, ORANDOCTOD, PETITOCTOO, ORAND0CT00), ce jeu peut rapidement se

generaliser (CERCLE CERCLED, CERCLEO, DEMI.CERCLED, DEMI.CERCLEO; ou encore

BRASOAUCHE , BRASDROIT , OEILOAUCHE, OE I LD ROI T , JAM B EOAUCHE , JAM B ED ROI T E ; act...).

3) L'habilete a organiser des procedures evec d'autres procedures est l'habilete is plus souvent

associee A la programmation structuree en Logo. Plusieurs auteurs definissent en effet,

implicitement ou explicitement, is progammation structuree comme une habilete a crier des

programmes oil procedures at sous-procedures stint logiquement et economiquernent emboitees.

Certes des niveaux Cleves de sophistication peuvent etre atteints dans ce domain, mais

nonobstant ces niveaux, l'habilete A organiser des procedures refire toujours A le capecite

dutiliser des touts (des procedures) comma des elements at A les organiser entre eux pour

produire un nouvel "output". Un jeune program meur qui eras FLEUR en utilisant A repetition

son CARRE , un programme OCTO qUi appelle OCT00 puis OCTOD, ou encore une TETE, un CORPS,

des BRAS at des JAMBES reunis sous BONHOMME stint autent exemples differents

dorganisation procedurele. L'orgeniaation procedurele est en quelque sorts une repetition, A un

dsuxieme niveau, de is definition de procedure, a is difference iris qua les entitos alors

selectionnees at organisees ne sent plus uniquement des actions simples- ( primitives), mais

aussi des series elections regroupees (procedures).

4) L'habilete a exporter des procedures refers pour se pert a l'utilisation repatee at varies

dune mime procedure dens plus d'un projet. Le procedure ainsi export& peut avoir ate definie

isolement ou dans le cadre dun projet particulier. Les formes geometriques, par exemple, cunt

A l'occesion creeds isolement, puis ulterieurement elles stint reutilisees dans plus d'un projet

(FLEUR, POISSON, BIKE, act...). En d'autres occasions, une procedure creee pour un projet bien

specifique est empruntee pour un autre projet ( un SOLEIL, un OISEAU , un effet FlASH ) .

L'exportation dune procedure nest pes toujours faisable (souvent A cause de is presence de

commandes specifiques de &placement) mais cola n'empeche pas pour autent les enfants

d'exercer is dite habilete : a &lout de is procedure elle-mime, ils transporteront dens un
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premier temps Vide et le mode de construction (emprunt dune formule de repete ou copie

dune eerie de cornmandes presentes dens is procedure convoitee )!

7-MatItle du devel000ement des habiletes 1:were:wises A le oroaremmetion structures

Les habiletes precedemment decrites treduisent tout compte fait cinq proprietes fondamendales

de la procedure Logo : is procedure est une entite offt7nissable, modifiele, trensformetIe,

organised le et exportable Ainsi un premier caller dequilibre en programmetion structurie est

atteint lorsque is programmeur pent voir la procedure comma Is somme de ces proprietes. 11

West certes pas encore expert pour eutant dens is aestion de toutes ces caracteristiques, mais it

connait, per experience directe et construction progressive, la polyvalence de Is procedure.

Le present modele tente de decrire les stapes suivies per nos enfants pour apprivoiser chacune

de ces carecteristiques, at pour les intogrer progressivement . A l'instar de d'autres modeles .

cleveloppementaux, it respecte is double dimension du passage du concrete l'abstrait (de l'action

au concept) et du simple au complexe (de une 8 plusieurs caracteristiques). La competence de

l'enfant est debord experientiells et distincte pour devenir progressivement notionnelle et

integree.

Dens une premiere phase, lee enfants s'exercent 6 definir des procedures, puis tantot ils les

modifient, tentot its treveillent soit A les transformer, soit 0 les organiser. A dautres

occasions, ils apprivoisent l'idee &exporter des procedures. Regle generale , ces differentes

actions sont, 6 ce niveau, exercees separement (dans le cadre de projets differents ) ou de

proche en proche (sens.enticipation prealable at non necessairement repetees dans le projet

suivant).

A une seconde etape, certeines habiletes sont deliberement Pairees pour is realisation ponctuelle

dun projet. Les trois regroupements les plus frequemment observes sent : a) definir et

transformer; b) definir et organiser; c) exporter (au lieu de definir) et organiser. A noter qua

l'habilete 6 modifier une procedure est ici percce comma un outil applicable a toute procedure

simple (sans sous-procedure). L'action procedurele est donc, a ace niveeu, plus complexe, plus

integree ( referent 6 plus dune proprietes Ale tots) qu'eu niveeu precedent. Un exercice repete

de ces combineisons simples permettre eux enfants de se representer le procedure comme eyent

plus dune fonctions.
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A la tro181eme phase, la procedure est connue comme potentiellement modifiable,

transformable, organisable ou exportable. Les planifications et 'les actions du pragremmeur

traduisent le caractere polyvalent desormeis attribue 6 la procedure : F., 11 ens, ennonce qu'il

ye faire un projet lettres "de vais repetisser mon CERCLE pour faire mon o, et je vais l'utiliser

pour b, d, p, q en leur rejoutent une queue; puis je vais prendre juste une pertie du a

(DEMI.CERCLE) pour faire c,m,n ect. Avec toutes mes lettres je veis me faire un A.B.C. et

avec les lettres de mon A.B.C. je vais ecrire le nom de mes amis." Et F. mit quatre semaines, a

raison dune heure/semaine, pour realiser son projet : une super procedure A.B.C. contenant

vingt six procedures, souvent parentes entre elles, et quatre eutres super-procedures

reproduisant les noms d'amis. Cette vision multifonctionnelle de la procedure ne rile pas

autometiquement, pour autant, certains problemes concrete de gestion procedurale ( problemes

dinterfeces entre autres), ni plus qu'elle assure dune maitrise de taus les instants de le logique

de la pens& procedurale. Ma's a notre evis, les experiences at connaissences acquises

constituent le base des competenses en programmation structuree at elles outillent bien le sujet

pour aborder is prochaine phase developpamentale, celle de l'apprentissages des mecanismes at

lois de gestions des proprietes de la procedure.

Ainsi le projet denimeux en formes geornetriques de R. illustre bien le chemin encore 6 faire,

mais aussi les competences deje acquises pour faire face aux future' apprentissages. Pour

ciefinir ses differents types danimeux, R. exporte, transforme, organise sans aucun probleme

des formes geometriques deje definies dens un projet anterieur de banque de formes; meis voile

qua R. experimente toute une serie de difficult& dens l'orgenisetion at l'exportation de

sous-procedures (oeil, nez ..) definies cette fois au fur eta mesure de see besoins : les

nouvelles procedures incluent souvent des &placements at s'averent plus difficilement

exportebles, organisables; la position de la tortue differe salon qua c'est l'aell du poisson ou

celui de la chenille qui est 6 tracer at cele entraine frustration ou modification des plans de

travail procedural; act... Les obstacles rencontres n'empedhe toutefois pas R. de reunir ses

trois animaux completes dens une nouvelle super-procedure. Ily a done encore des inelegances,

des solutions parfois elementaires, macs le pluralite fonctionnelle de la procedure est desormais .

connue, experiment& et appreciee par le programmeur ; l'attention at les energies peuvent

desormais etre portees sur l'analyse des conditions necessaires pour que les procedures definies

soient en taus temps at toutes circonstances tnooKebles, tr.ensformetrIes, orgenisehltey et

expor7s/7/es

La description du present modele elabore a partir dobservations denfants de 9-11 ens
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travaillant a long terme dens un environement Logo viseit deux objectifs principeux. Un

premier objectif etait de souligner le developpement effectif des competences procedureles

memo si le niveau de performance atteint, pour les ages ici studies, nest pas toujours celui dun

expert. Un second objectif etait de &gager certaines ides de travail pour quiconque veut

favoriser le c*veloppement et l'epprentissege de la pensee procedurale en programmation

structures. Le present modele suggere quelques lignes de force a inclure dens un plan

dintervention Logo. La presentation de petites mises en situation ou les enfants Logo sort

apples a definir des procedures pour tent& pouvoir les modifier, tent& les transformer, tent&

les organiser ou les exporter permet ridentification at l'experimentation de differentes

fonctions procedurales, at ce dens le cadre de situations simples at stimulantes. De meme, le

presentation subsequente de mises en situations demandant de combiner deux ou 'trots de aes

actions hebilite Me le jeune programmeur. a anticiper le caractere multifonctionnel de la

procedure et a confronter certain problemes simples de gestian procedurale. Ainsi outille,

l'enfent peut par la suite faire appal a l'ensemble des proprietes procedureles pour la

realisation de projets, libres ou suggeres, plus varies at plus complexes. emote tenu du

niveeu de competence maintenant atteint, l'apprenti-programmeur pourra desormais

spontanement s'attaquer a ctIfferents problemes de gestion procedurale ( &ant donne les

differentes parties dun projet quel est l'ordre preferentiel des stapes de travail; comment

doit-on prodder si l'an veut definir des procedures utilisables dans plus dun projets; ect.. ).
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THE NAIVE CONCEPT OF SETS IN ELEMENTARY TEACHERS

Liora Linchevski and Shlomo Vinner
Israel Science Teaching Center
Hebrew University Jerusalem

Abstract

Four aspects of the concept of set were examined in 3009 elementary,
teachers and student teachers by means of a questionnaire based on some
interviews. The aspects were the following: 1. The set as an arbitrary
collection of objects. 2.. The singleton as a set. 3. The set as an
element of another set. 4. The order of elements in a set and the
problem of repeating elements. It was found that tne naive concept of

sets in these teachers differs from the mathematical concept. The
majority of these teachers believes that the elements of a given set
should have a Common property, that a set cannot be an element of

another set and that either repeating elements or the order of elements
in a set do count. About a half of them believes that a singleton is
not a set.

The naive concept of set seems to us both interesting and important.

Everybody who teaches the concept of set at a higher level of

mathematics, wnether this is a high school level or a college level.

Should be aware of the common views about tpecOrrcept, 'Since the word

"set" appears very often in everyday language, it is 'only natural to

assume that almost everybody will nave definite views about it which are

different from tne mathematicians' views.

In this study we chose several aspects of the mathematical concept

of sets and examined whether elementary teachers are aware of them and

if not what are their conceptions. The reasons we chose elementary

teachers. were the following:

1. we believe that it is important to know about the mathematical

concepts of elementary teachers whether or not these particular

concepts are taught directly in school.

2. fhe naive concepts of elementary teachers are probably quite close

to the naive concept of most educated people with limited

background in Mathematics. Thus it is possible to assume that

junior nigh, senior high students or even college students, wnen

starting to study about sets, have similar concepts. This

assumption, however, needs experimental verification.

Some of the aspects we chose were raised by FreUdental (1969a.

19690. 1970. pp.339 -344) and Vaughan (1970). Both of them pointed out

that the didactical approach to the concept of set, as presented in many

textbooks, is sometimes inconsistent with the mathematical concept.

This can be a cause for misconseptions.
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Our research questions are the following:

1. Do elementary teachers think that all members of a given set must

have a common property? In other words, under what conditions is a

collection of objects considered as a set by eleMentary teachers

(the issue was raised in Freudental, 1969b).

2: Is a singleton (a set containing only one element) considered as a

set by elementary teachers?

3. Do teachers understand that one set can be an element of another

set, and also, when drawing the diagram of the union of two sets,

are they aware of the difference between the diagram representing a

new set whose members are the two given sets and tne diagram which

really represents the union?

4. what are the teachers' criteria to determine whetner two sets are

equal and how are these criteria related to the mathematical

criterion? Note that the mathematical definition for set equality

is. the following: Ar in case for every element x, xeA if and

only if )(ES. Thus, repeating elements in lists, tables or

diagrams describing sets should be considered as one element and

also the order of the elements in such list is not important,

namely, lists with the same elements but with different order

describe the same set.

pample

Our sample consisted of 237 elementary teachers (all of them teach

mathematics to their students] and 72 student teachers (who were

preparing themselves to teach mathematics among other subjects) in

Jerusalem. In tne 237 teacners we distinguished between two subgroups.

The first one included 54 Mathematics coordinators. These are

elementary teachers wno are interested in teaching Mathematics and in

addition to that also underwent some in-service training, thus, their

mathematical background is better, to certain extent, than tne other 183

teachers who consisted the second group. In the result section we will

refer to this second group as the teacher group.

Questionnaire

In order to form our questionnaire we interviewed 21 teachers. we

posed to them several questions and recorded their reactions. As a

result of this interaction we modified the interview questions and came

Up with the following Osest4Opnaire.

b
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Questionnaire

1. Which of the. following collections is a set? Explain your answer!

(a) 1, 3, 7, 9, 0, 12

(b) a book. .1, 3, a table, 7, 9

(c) a table spoon, a tea spoon, a fork, a knife

ca) 7

(e) all the children under age 10 who flew to the moon

(f) (7), (5). 7. 5

(g) a triangle, a square, a circle, a box

2. Give five examples of sets which you would choose in order to

present to your students the concept of set.

3. A teacher asked her students to give an example of a set. One of

the students wrote: My set has three elements: (a) 5, (0) 1.5, (c)

the set of all the even integers between 2 and 100.

answer correct? Explain!

4. Given the sets

Figure 1

and

Is tnis

Which form (if any) seems to you more appropriate to represent the union

of these sets?

(a) Figure 2

(b)

Explain!

5. Given the set (1,3..<7,4).

to it?

(a) (5.3.7,9.1)

Which of the following sets are equal

(0) All the odd integers between 0 and AO.

(c) (1,5,3.5.7,9)

12 15
(d) (.16. T1 3.5 x 2: 17; 3)

(e) (9,5,3,0,7,1,5).

(f) (9.5.3,1,0)

Explain!

The reader can easily fincy.vhich item of which question in the

questionnaire is related to our'Pesearch questions.
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Resul t's
1. The set as an arbitrary collection

In mathematics any collection of objects (arbitrary or not, unless

you are in a highly Sophisticated situation)-is a set. However. 97% of

the student teachers, 89% of the teachers and 60% of the Math.

cbordinators did not consider as sets collections whose elements did not

have something in Common (note that a "teacher" in this section is a

teacher who is not a Math. coordinator). A collection of elements is

regarded as a set only if these elements have a common property. Many

respondents did not accept 1(b) as a set explaining it, for instance.

by: 1. No common property. 2. I can't think of a name describing the

entire collection. 3. There are least two sets nere, numbers and

objects.

The last arguments is especially interesting since it implies that

a union of two sets is not necessarily a set, a Claim which contradicts

one of the fundamental principles of Set Theory. Among the arguments

not accepting 1(g) as a set we found: .1.A box is 3-dimensional contrary

to the other figures. 2. One of the elements does not have a common

property.

On the other hand there were some respondents who accepted 1(b) or

1(g) as sets by saying: 1. I think Chat any set of elements can be

defined as a set even if they do not nave salient common property. 2. It

is an arbitrary set. Some respondents who accepted 1(a) as a set said:

1. Probably this is a union of ever, numbers and odd numbers (here.

the belief that a union of sets is also a set is expressed contrary to a

previous case above). 2. This IS a set of numbers. There is a common

property (although the answer is mathematically correct the explanation

snows tnat the criterion for a collection to be a set is the common

Property].

It is worthwhile to mention that 17% of the Math. coordinators

rejected some items in Question 1 as sets because the parentheses of the

set notation were missing. For instance, 1(a) was not considered as a

set because it was not written as (1.3.7,9.0.12). Formally, they are

right, but formal notation was not our concern in this questionnaire.

For the decisive majority of our sample this was not a problem at all.

While 23% of the math. coordinators. 8% of the teachers and 3% of the

student teachers admitted that a set can be an arbitrary collection of

objects, in the "construction task" (Question 2) almost everybody

mentioned sets with common property. This shows how weak is the idea of
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arbitrary sets (if it exists at all) in these teachers' thought. It is

natural to expect examples with common properties when you ask for one,

two or three examples, but when you ask for five examples and the

respondents are aware of the concept of arbitrary sets and its

importance to students they should give at least one arbitrary set. The

typical answers were: 1. Shirts 2. The students of the first grade 3.

The girls in the class 4. (1,2.3,4,5 ..... ). It was interesting to

examine tne answers to Question 3. It was not accepted as a set by all

the teachers, all the student teachers and 95% of the Math.

coordinators.

In this item tnere were two potential arguments for the rejection.

The first one was the common property and the second one was the claim

that a set cannot be an element of another set. It turned out that in

this case the second argument was dominant (56% of the teachers. 70% of

tne students teachers and 76% of the Math. coordinators). The above

information is presented in Tables 1 and 2 with some additional

information.

Table is Distribution Of reps ondents to Question i

Teachers
(N = 183)

Student
Teacners
(N . 72)

Math.
Coordinators

(N . 54)

The elements of a set should
have a common property

89% 97% 60%

A collection of arbitrary
elements can be a set

9% 3% 23%

The elements should be given
in .parentheses otherwise
they 00 not for a set .

2% 0% 17%

Table 2: Distribution of respondents to Question 3

Teachers
(N = 1831

Student
Teachers
(N = 72)

Math.
Coordinators

(N . 54)

It is not a set because there
is no common property

44% 30% 19%

It is not a set because one
set cannot be an element of
another set

56% 70% 76%

Other 0% 0% 5%

2. The singleton as a set

This aspect of sets was examined by item 1(d). The results are

shown in Table 3.
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Table 3 - Dietritution of respondents to Question %WI

Teachers
(N = 193)

Student
Teachers
(N . 72)

Math.
Coordinators

(N = 54)

A single element cannot form
a set

48% 55% 5%

A single element can form a set 52% 45% 92%

Typical explanations to 1(C) were:

1. No, a set is more than one element.

2. Yes, it is a set with one element.

3. Yes, a set with 7 elements.

Note that in answer 3 the inability to accept a set with only one

element led the respondent to the concrete interpretation of the number

7: it became a set of seven elements. Unfortunately, we could not

locate the respondent to ask her or him whether the number 1 can form a

set.

. 3. The set as an element of another set and the representation problem

of a union of two sets

These aspects were examined Dy Questions 3 and 4. Table 2 already

indicated that at least in the context of Question 3, the majority does

not accept a set as an element in another set. It cannot be claimed

that the figures in Table 2 really express the percentages of .those who

believe that a set cannot be an element in another set. This is because

of the fact that the respondents had 2 options to answer the question.

Many of them chose the argument of common property. We do not know what

percentage of them, if asked explicitly about tnis issue, would have

accepted or rejected the idea of one set as an element of another set.

Thus, we believe that the percentages of those who rejected the idea of

a set as an element of another set are higher than those indicated in

Table 2.

As to the representation of the union of two sets (Question 4).

more than a half prefered Figure 2 to Figure 3 (61% of the teachers,

47% of the student teachers and 50% of the coordinators). According to

the mathematical convention, Figure 2 represents a set whose elements

are the two original sets. We are sure that this was not the intention

of the respondents (most of them do not accept the idea of one set being

an element of another set). However, they Co not notice that a circle

around a list of elements makes it a set according to the common
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convention and therefore, at the context of Figure 2. they got a set

whose elements are the two given sets. The reason why so many

respondents prefer Fig.2 to Fig.3 might be that in Fig.2 there is an

indication how the union set was. constructed from its components.

4. Equality of sets, the problem of repeating elements and order

Question 5 had the potential to examine three aspects of the

concept of Set. The first one can be described at the intention-

extention aspect. A set can be described in various ways, each of them

relates to a different property of the elements. when comparing the

sets defined like that, should we pay attention to the properties and

thus stipulating that we deal with different sets or ignore the

properties and pay attention only to the elements and thus deciding that

the sets are equal? In other words, when comparing between sets, should

we consider the intention or the extention? For instance, the set of all

even primes and the set of all the whole numbers less than 3 and greater

then 1 have' the same extention but different intention. In Mathematics,

only the extension is considered when determining equalities of sets.

Thus. 0 : . 3.5 x 2 : IL ; 3) . (1,- 9, 7, 5. 3).
5

Several respondents considered the last two sets as diffe.ent sets. One

can claim that this was done on the basis of superficial impression.

They simply did not bother to carry out the computations at the left

side. This might be true in some of the cases. In otner cases the

written explanations snowed that the distinction between tne two set!

was made because of conceptual considerations.

Table 4: Distribution of answers to question 6. The
principles used in order to determine the
equality of sets

Teachers
(N = 183)

Student
Teachers
(N . 72)

Math.
Coordinators

(N .. 54)

The mathematical definition 18% 15% 56%

The order and the intention do
not matter but repeating
elements make a difference.

21% 34% 13%

The oraer does not matter but
the intention makes a
difference

5% '5% 6%

The order does not matter but
intention and repeating
eiements make a difference

21% 16% 11%

Order repeating and intention
each of them makes a
difference

32% 28%. 6%

Other , J% 2% 8%
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The other two aspeCts which were involved in Question 5 were the

repeating elements and the order. The respondents answering Question 5

could fail in each on of the above aspects if they deviated from the

mathematical criterion for equality of sets. This is shown in Table 4.

Discussion
Our results show several conflicts between concept images and

concept definitions (Vinner, 1983) in the case of sets. Our sample

consisted of elementary teachers but every population with the same

mathematical background will probably have similar views. It is

interesting to compare oetween the subgroups of our samples (teachers.

Math. coordinators and stuaent teachers). There are some items were the

Math. coordinators did better and even much better than the rest of the

sample (see Tables 1.3 and 4). In Question 4 there was not noticeable

difference between the teachers and the Math. coordinators. On the

other hand in Table 2 the rejection of a set as an element in another

set seems higher in the Math. coordinators. This impression, however,

might be wrong. It might be the result of the fact that Math.

coordinators do not deny a collection from being a set on the ground of

not having a common property. For certain percentage of the rest of the

sample this is still a good reason.

The fact that the Math. coordinators snowed better conceptual

understanping is enougn ground for hope that teaching. can overcome some

students' primary views. But teaching can be much more efficient if it

relates to the primary views which were described here and does not

ignore them as it does in many cases. Our recommendation is that

studies like this one should be presented to student teachers in an

appropriate way when they are taught about sets. This will help them to

overcome the misconceptions they already have or those that might

develop if certain steps of caution are not taken ahead of time.
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CONCRETE INTRODUCTION TO PROGRAMMING LANGUAGES

AND OBSERVATION OF PIAGETIAN STAGES.

- CLINICAL INTERVIEWS -

F: Lowenthal

UniversitA de l'Etat a Mons.

We introduced, in a concrete fashion, a simplified
programming language to very young children. The device
we used can be used to train young children (6-year olds)
in a very specific task, but also to observe trained and
untrained children during clinical interviews. The training
does not seem to have any immediate influence on purely
school performances ; but the clinical interviews show that
the trained children have acquired skills which are not
natural for children of that age : the ability to use and
combine two inputs to produce an output, some notions about
recursion and programming. We wonder whether there is any
transfer to other domains such as : Piagetian conservation
tasks, the use of names instead of a long and complete
description, the study of real programming with a language
such as LOGO.

PIAGET has shown (1936, 1955) the importance of concrete manipulations

at an early stage. He used such manipulations to observe how children

acquire concepts such as conservation of liquids, ... FLAVELL (1977)

wrote that one of the major differences between the pre-operational

and the concrete operation stages is that the younger child is centered

on one relevant element of the phenomenon he observes, while the other

child is "decentered" and can consider several relevant elements

simultaneously in order to compare them and draw logical conclusions.

BRUNER (1966) described an experiment where concrete manipulations of

"logically organized" objects were used (beakers were placed at

different places on a board depending on their height and thickness).

He showed that such manipulations made cognitivists' observations easier;

but also that "what is needed for the child ... is organizing

experiences into a form that allows more complex language to be used

as a tool not only for describing it but transforming it".

PAPERT (1984) insisted on the importance of computer languages, and

more specifically on the manipulations of representations of objects

via LOGO, which is procedural and recursive. Nevertheless all these
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computer languages, LOGO included, seem too abstract for young children :

a special vocabulary must be used, words must be written and read, and

a keyboard must be used to communicate with the computer. Even if we

assume that these minor details can easily be settled, we still do

not know wether young children are able to use a language such as LOGO :

do they really conceive what-a procedure is ? are they able to replace

by a name a list of actions, and then to combine such names instead

of combining basic actions ? do they have any understanding of the

concept "recursion" ? Should the answer to one or more of these questions

be negative, one might wonder whether these concepts and competences

can be taught to young children and then wonder wether such a teaching

would be useful.

For all these reasons, we thought that it would be more useful to let

young children manipulate concrete representations of objects which

suggest a logical structure because these objects are in fact a concrete

representation of a formal system sufficient to perform reasonings.

COHORS-FRESENBORG's Dynamical Mazes (1978) can be used in such a way.

We used them (1986) with 6-year olds (first graders) and noticed a

transfer from the training we gave them to their performances in reading

activities. We then tried another material with similar children. This

material has been described by SAERENS (1984) who wanted to use it to

analyse sentences while we described how to use it as basis for a

programming language (LOWENTHAL, 1985).

The device itself consists of a white plastic board furnished with holes.

In these holes one can put coloured plastic nails, or pegs. The pegs

are defined by two variables : their colour and the shape of the head.

There are five colours : yellow, green, red, orange, blue ; the heads

can be squares or triangles. We used short sequences of pegs : each

received a name represented by a triangular peg ; this definition was

placed on the left of the board : our short sequence became thus a

procedure. A short sequence of triangular pegs placed in the centre

of the board represented a programme : a list of procedures which had

to be executed. The end product was then placed on the right and could

only contain' square pegs (i.e. one had to perform a list, finite or

not, of basic actions). We introduced a special directional peg : the
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yellow triangle which was only used in this context.

The most relevant feature of this device, when used as basis for a

programming language, is that it constitutes a procedural language :

procedures can be combined and referred to. Another relevant feature

of this language is that a procedure can call another one (the name

of the other one has been inserted in the definition of the procedure).

A procedure can thus call itself provoking an infinite recursion. Finally

some kind of turtle like orientation can be introduced.

We used this setting to ask three kinds of questions. Firstly, we gave

the procedures and the programme and we asked the subject to produce

a long sequence of square pegs by replacing each triangular peg by its

"meaning" (i.e. the subject had to execute the programme). Secondly,

we gave the procedures and the end product, and we asked the subject

to propose,using triangular pegs,a programme which could have been used

to produce this end product with these procedures. Thirdly, we gave

the programme, the end product and the names of the procedures, and

we asked the subject to discover definitions which could have been used

for these procedures (i.e. produce a sequence of "things" for each of

the given triangular peg). In each case, the child had to solve a

problem : he had to produce an output taking simultaneously account

of two inputs of different kinds.

The use of such a material as observation and/or teaching device suggests

a great number of questions. When comparing children who were trained

to use this device with untrained subjects, can one show that the first

ones :

a) have better school results, as far-as classical-school problems are

concerned, when they are evaluated by means of classical tests or

by the teachers' grades ;

b) have transferred the competence acquired in a pseudocomputer language

to reading skillg, as mentionned for the Dynamical Mazes, or to

vocabulary or other skills involving the semiotic function ;

c) have a better apprehension of spatial concepts ;

d) verbalize more easily and are more able to explain what they did

and why ;

e) are more efficient when they start with real LOGO.
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One can also wonder whether clinical observations realised while using

this material as "testing device", give informations concerning the

type of cognitive strategy a child uses and the type of cognitive

processes which are involved for him (COHORS-FRESENBORG, 1984 ; SCHWANK,

1986).

Finally we will show that such observations can be used to specify which

Piagetian stage, (or part of a stage) has been mastered by the subject.

Moreover we will show that some higher concepts are teachable to younger

children although we do not yet know whether the result of our teaching

is limited to the use of this material or can be transferred to other

domains.

I. EXPERIMENTAL SETTING.

We worked with 76 6-year olds (first graders). We used a pre-test to

split the group in two equivalent subgroups : an experimental group

and a control group. The pre-test contained three parts : a) a reduced

version of the BD in order to measure the general intelligence of the

subject (in VAN WAYENBERG), b) PORTHEUS'mazes in order to measure the

subject's capacity to make plans and to foresee, and c) Similitudes,

items extracted from the WPPSI (WECHSLER, 1972).

The "experimental" subjects worked during 6, 7 or 8 30-minutes sessions

with the pegboard. They worked by groups of two. The "control" subjects

also worked by groups of two on typically placebo activities (play games,

draw, sing, ...). This activity lasted from January to May.

At the end of this activity, all children were submitted to a post-test

containing four parts : a) a reduced version of the BD, b) LAMBLIN's

"test de la goutte" (in VAN WAYEMBERG), similar to the REY figure test,

but simpler : it measures the level of structuration of the perceptive-

activity competence, c) the Reversal (EIFELDT, 1970) which measures

the level of spatial organisation and lateralisation and d) a test of

mathematical knowledge (CLEEMPOEL-HOTYAT) concerning only the kind of

mathematics which should be taught in a first grade. 6 months later,

in January again, we interviewed the 11 children who got the best scores

at the post-test, in each group. The procedure used for these clinical

interviews will be presented later in this paper.
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2. STATISTICAL RESULTS.

As far as typical and classical school activities, problems,

mathematical activities are concerned, our testing shows NO significant

difference between the experimental and the control group. the teachers'

evaluations of reading abilities were also taken into consideration

(but this is not a standardized test) : these evaluations do not show

any significant difference between both groups. Neither did we observe
a difference in the test which was used to measure the subjects'

apprehension of spatial concepts.

3. CLINICAL INTERVIEWS.

We prepared for these interviews a video tape showing an adult hand

solving 6 exercises on the pegboard :

a) production of the end product ;

b) discovery of the programme used
;

c) definition of the needed procedures (the solution of this exercise,

as presented on the videotape contained a mistake) ;

d) use of procedures calling other procedures ;

e) use of a procedure containing its own name (and thus calling itself) ;

f) use of the directional triangle.

The material was shortly presented to each subject when he started to

view the tape. The interviewer showed him then what the adult had done

stopping at each step and he thus subdivided an exercise in as many

parts as requested by the child) ; he asked the subject to tell what

he had seen and to explain what had been done and why it had been done.

Some children were also asked to predict what would happen next and

all the children who seemed unable to understand what was going on got

hints from the experimenter.

In order to analyse these clinical interviews we looked at the following

elements :

a) what type of explanation does the subject use to produce or explain
a result : we consider that a subject produced a high level

explanation if he took into account 2 information sources

constantly, or 1 source for some problems but 2 sources for most
of them ; otherwise we consider that he producedalowlevel explanation;

b) is the subject able to use labels to represent a collection of objects

(e.g. a chain of squares) and to manipulate these labels instead

1 5 (3



ol the objects they represent, in order to perform a reasoning ;

c) is the subject able to understand and explain that a procedure can

contain a label (a triangle) "calling" another procedure ;

d) is the subject able to understand and explain that a procedure might

contain its own name and thus provoke an "infinite recursion" ;

e) is the subject able to discover the mistake made by the adult and

to react by correcting it rather than by modifying his own solution ;

f) is the subject able to understand and explain the meaning of the

directional triangle ?

- In the experimental group, 7 subjects (out of 11) gave high level

explanations, the same subjects used labels in a useful fashion,

the other 4 subjects gave some kind of explanation ; in the control

group 3 subjects (out of 11) used high level explanations and 2

subjects gave explanations taking none of the available information

into account, the only control subject who used labels correctly,

also gave high level explanations.

- In the experimental group, 5 subjects clearly understood that a

procedure can contain a label, and thus call another one and 3 of

them more or less understood the process associated with the "infinite

recursion", but 3 of the 5 subjects mentionned above had never seen

similar problems during the training period ; in the control group

none of the subjects understood either the "call" or the "infinite

recursion".

- Most children either did not detect the mistake or modified their

correct proposal to stick to the wrong adult solution.

In both groups, 3 subjects understood the meaning of the directional

triangle, only 2 of these 6 children had seen similar problems during

the training period.

4. DISCUSSION AND PROPOSALS FOR FURTHER RESEARCH.

A. Reflections concerning the subjects of the experimental group.

These subjects have been trained to perform a very special kind of

task which has no relation with what is usually done at school. More

than 6 months after the training ended, these subjects perform well

when ,they have to discuss and explain this task to an adult. It is

thus obvious that these 'learners have assimilated, certain notions

and/or strategies. It is thus important to try to specify which
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notions or strategies they acquired and to figure out whether they

transferred these to other domains.

These subjects learned to use labels and to manipulate them instead

of the chain of objects they represent : they were thus able at the

age of 7, to manipulate symbols in a specific setting. A further

experiment whill show whether they do this in other domains, and

more specifically whether they use less, as much or more periphrases

and metaphors in their usual language, than the subjects of the

control group.

These experimental subjects also seem to be able to use, in a special'

setting and at the age of 7, two different sources of information

simultaneously, and to combine them in order to explain a fact. A

further experiment will show wether these subjects are better than

their control counterparts when confronted to typically piagetian

conservation tasks requiring the ability to combine two informations

(e.g. width and height of a glass).

Finally some of these subjects appear able to understand that a

procedure can contain basic instructions and instructions"calling"

another procedure. This is also the case for experimental 'subjects

who never saw similar exercises before. A research with LOGO on actual

computers will show whether they are better at programming tasks

with LOGO or simply better in the direct mode, or not better at. all.

B. Reflections concerning the subjects of the control group.

The results obtained by these subjects show that, at least in the

setting we used and more probably in general, certain activities

are not natural before the age of 8 : e.g. use simultaneously and

combine two informations to explain or produce an output ; use and

manipulate labels instead of the objects themselves ; use in a

sequence of instructions the instruction : "perform the instruction

whose label is xxx". A further experiment will show at which age

these activities become natural for non trained subjects. It has

been shown (LOWENTHAL and EISENBERG, 1984) that the use of recursive

reasoning is not. always natural, although it is necessary, in 18._

year olds students starting a University course in mathematics.

C. Reflections concerning all the subjects.

- Our obgervations also confirm that children aged 7, experimental
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and control, are easily impressed by adults' solutions and do not

react positively to adults' mistakes.

A less expected observation is that the meaning of the directional

triangle has not been discovered by a majority of subjects, although

most of them agree to say that "the squares (end product) do not

look the same" (i.e. are no longer in one line).

We are already conducting the new experiments we mentioned and we believe

that the material we described might possibly be used in the future

to test children's abilities in totally different problem solving

situations. This device will probably also help us to determine which

piagetian stage has been reached by the subject.
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COGNITIVE and METACOGNITIVE SHIFTS

John H. Mason

p. Joy Davis

file:PME12

ABSTRACT
A basic mathematical question is to ask, overtly, 'What is
the same about these apparently disparate and yet strikingly
similar situations?', and to try to bring this to
articulation. PME XI in Montreal provided us with numerous
apparently disparate experiences, in the form of the many
presentations. Yet we were struck by a common thread
running through most of the sessions we went to, and this
paper is an attempt to articulate that sameness.

The sameness has to do with shifts in perception and
attention. One example is the shift indicated above, in
moving from a sense of sameness, to an articulation of that
sameness. The sense of sameness is akin to breathing air -
a natural activity, a state of immersion in experience.
Becoming aware of sameness as a sameness, and trying to
bring that to articulation, is akin to becoming aware of the
fact of breathing, and trying to describe what breathing is
like. Our intention is to go further, and to begin an
analysis of the mechanics and function of shifts, akin to
studying the mechanics and function of breathing.

This paper must necessarily be brief, and hence laconic. A fuller

analysis, with more examples, with more detailed links made between

examples and mechanism, with an exegesis of the kind of theory which we

are developing, and with a justification for our epistemological

approach and our method of study, must wait for another occasion.

Elements can already be found in Mason a Davis 1988 and Mason 1986.

There are four sections:

1 The scope and range of shifts in mathematics education:

Examples of some of the fragments of disparate experiences which

the idea of shifts embraces.

2 The fundamental importance of shifts in the psychology of learning

mathematics.

3 Significant factors in the bringing about of shifts:

First steps towards a descriptive vocabulary to enhance noticing.

4 The structure of attention:

First steps towards a mechanism of shifts.

1 THE SCOPE AND RANGE OF SHIFTS IN MATHEMATICS EDUCATION:
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Examples of some of the fragments of disparate experiences

which the- idea of shifts embraces.

By a shift,- we mean a shift of,attention, often sudden, but sometimes

gradual, in which one becomes aware that what used to be attended to was

only part of a larger whole, which is at once, more complex, and more

simple. Frequently, shifts studied in mathematics education are from

object to process, and from process to process-as-object. For example:

a shift from attention to number as a sound uttered during the 'act

of counting', to attention to the act of counting, and then to

number as independent of counting;

a shift from having to mentally calculate when converting, say,

temperature given in degrees centigrade to degrees fahrenheit, to

simply knowing (perhaps approximately), in both systems;

a shift from root 2 as a number approximately equal to 1.414..., to

root 2 as a number known only by its property that it is positive,

and that its square is 2.

a shift from seeing an infinite sequence as an unending process in

time, to seeing it also as a completed act;

a shift from experiencing emotions while engaged in mathematical

thinking, to being aware of affective factors in mathematical

thinking during the thinking;

a shift from being immersed in being stuck while working on a

problem, to being aware of being stuck, and hence freed to be able

to do something about it;

a shift from seeing a mathematical problem as being hard,

interesting, important, ..., to seeing 'hard', 'interesting',

'important', etc as descriptive of the relationship between a

person, a problem, and the circumstances;

A quotation attributed to Kant, sums up beautifully the essence, the

ubiquity, and by extension, the importance of shifts: The succession of

our perceptions does not add up to a perception of that succession.

2 THE' UNDAMENTAL IMPORTANCE OF SHIFTS

IN THE PSYCHOLOGY OF LEARNING MATHEMATICS

The examples of shifts given in section 1 are intended to be immediately

recognisable to mathematics educators. They illustrate some of the aims
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and activities reported by many researchers at PME XI, some of whom were

concerned with how pupils learn specific mathematical ideas, concepts, .

and techniques; some of whom were concerned with how teachers might

intervene with pupils to facilitate learning; and some of whom were

concerned with helping teachers to become aware of their own thinking

processes and thus in turn to help their own pupils.

We suggest that to make contact with a mathematical idea, to learn a

concept, to master a technique, and to develop an awareness, all require

a shift of perception in the pupil, indeed, often several shifts. For

example, in the well, studied domain of algebra, which is a watershed for

most people, there are at least five fundamental and essential shifts

required:

from an expression seen as a complex entity, to being seen both as a

rule for calculation and as the result of a calculation;.'

from attention on the result of counting, to attention on the act of

counting, so as to discern the generic aspects of the counting;

from single right/wrong answers to the possibility of a multiplicity

of ways of expressing the same pattern;

from the unknown as unknown, to the unknown being merely a

manipulable as-yet-unknown (Mary Boole 1909);

from 'seeing' pattern, to pictures supporting that 'seeing', to

words describing that 'seeing', to succinct words, to symbols

which can conveniently be manipulated.

The charting of common pupil misconceptions can be viewed as a charting

of behaviour in the absence of necessary, but sadly, essential shifts 01

attention. Teachers try to encourage pupils to shift their attention,

from focussing solely on getting correct answers, to how such answers

are obtained, and thence to the processes of thinking mathematically.

Teahcers often find themselves encouraging shifts of attitude, which is

concomitant with attention, among colleagues and parents, as well as

pupils. Educators conducting in-service sessions with teachers are

trying to encourage teachers. to shift their attention away, for example,

from mathematics as fact-learning and towards mathematics as engaging in

thinking and as a disciplined form of enquiry, At a second level, they

wish to help teachers shift their attention away from the details of

specific lesson plans and detailed tips for good lessons, and towards a

-general approach to teaching. 182
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What we found most striking, in discovering the idea of a shift of

attention lying behind the wide variety of research, pedagogic and

inservice activity displayed at PME XI, was that there is comparatively

little information about how such shifts of attention actually come

about. People report on their perception of teacher and pupil

behaviour, but tend to leave unnoted sufficient details to enable a

study of what brought about such attention shifts as do take place.

Before proceeding with our suggestions, it is extremely important to

draw attention to an enormous potential danger in the use of the

language of shifts. The English language encourages reification of

processes, and mathematics often makes progress by making just such a

shift. Shifts could become things which 'have to be made to happen'.

The very word shift, based as it is on a spacial metaphor, suggests that

it is something that you can 'do' to someone else. The next stage in the

potential degeneration of ideas through excessive articulation, is that

teachers might start to try to 'shift pupils', educators to 'shift

teachers', and researchers to study all this 'shifting' activity. We

believe that the notion of shifts is sufficiently important and powerful

to take that risk, but we emphasise that shifts are NOT somethings you do

to someone else. You cannot shift someone else's attention. You may

attract it, you may try to focus it, you may even act in a manner which

invokes temporary shifts of perspective. But, based on our experience,

we are certain that you cannot shift someone else's attention, at least

in the way in which we are using that term.

What is the use of a theory which denies the possibility of causation in

its application? We suggest that through the language of shifts, it

becomes possible to notice situations in which shifts, and blocks to

shifts, are significant factors, and because of this awareness,

alternative action can be taken - for example, in not 'beating your head

against a wall', but rather setting up activities that might promote the

necessary shifts (for example, the Didactic Situations of Balacheff

1980). By focussing attention away from the teacher as curriculum

delivery agent, and towards the teacher as guide and gardener, the

vocabulary connected with the theory of shifts can help influence the

development of a more productive classroom environment. Notice that we

are here talking about a shift of attitude and perspective, connected

1 6 3



491

with a shift in focus, on the part of the teacher. Our theory (when

fully elaborated) speaks to its own promulgation.

3 SIGNIFICANT FACTORS.IN THE BRINGING ABOUT OF SHIFTS:

First steps towards a descriptive vocabulary to enhance noticing.

Working from experience of ourselves, from observations of and

discussions with others, and reflecting on the examples proffered so

far, it seems that shifts come about in basically four ways:

in the presence of a person, usually whom we esteem or in whom we

have some investment (Investment for short);

when present experience is suddenly seen as an example or particular

case (Examplehood for short);

when a word, expression or image which is richly associated with

past experience (often described as meaningful or substantial)

provokes a moment of noticing (Resonance for short);

when we suddenly, and apparently spontaneously notice something new

or freshly (Grace for short).

Several of these may be operating at the same time. The reasons for

distinguishing and labelling them are that we can elaborate on those

aspects of shifts which seem to fit these patterns, and the labels can

be used (via the mechanism of resonance) to help notice shifts taking

place, thereby permitting specific action to be chosen.

Investment

Try to recall some moment when someone whom you respected or esteemed

came for the first time to your room or other familiar place. Often

when this happens, it is as if you see the place freshly, perhaps even

through the other person's eyes. Sometimes there is a sense of being

larger than life, of being more than ordinarily aware. It can also be

dysfunctioning in that you find yourself knocking things over or

otherwise behaving awkwardly. Teachers being inspected or visited often

report this sort of experience.

We suggest that personal investment describes the principal action

behind many metacognitive shifts. Such shifts occur when attention is

effectively split by seeing the world as though through the eyes of

another. The investment of esteem literally places part of our
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attention outside ourselves, and so produces the inner separation which

is one form of shift.

Examplehood

Try to iecall some situation in which you suddenly realised that what

you were attending to was an example or particular case of a general

principle. For example,

counting the number of stairs in a staircase is an example of the

'fence-post-argument';

realising that the experience of suddenly emerging from being stuck

on a problem by be6oming aware of being stuck, is an example of

what we mean by a shift.

The shift to examplehood is remarkably, and peculiarly, hard to speak

about, because the act of speaking entails that examplehood has already

occurred. Yet there are countless acts that people perform each day,

whose examplehood passes unremarked. People say 'Good morning', but

don't see this as an example of 'stroking' (Berne 1955); they think

about what they will do during the day, but don't see it as 'planning',

and so on. We are not suggesting that it would be helpful to see every

act, every object, as an example of something more general. However we

do observe that in mathematics, many students act as if they have not

detected examplehood when it is expected or intended.

Examplehood is an important part of our story, for it describes the way

in which disparate experience is integrated into a more substantial,

more meaningful net of connections and associations. Along with making

distinctions, it seems-to be a fundamental power of the human brain, and

at present represents a 'psychological primitive' (DiSessa 1987) in our

theory.

Resonance

In -the midst of a conversation, someone uses aword which for you has a

technical or emotive, importance. Suddenly you both hear what they are

saying, and simultaneously, you have an expanded inner sense of the

special meaning for you. It often happens that after your return from a

holiday in another county, you notice numerous references to that

country in travel write-ups and even in the news. A car - salesman

observed that when you buy a new car, you suddenly become aware of other
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cars on the road of the same model. These are examples of a process

which seems to work rather like the resonance of a musical instrument -

if you make a sound in the right place, the instrument reverberates and

amplifies the sound. In te'rms.of memory and meaning, a sight, sound or

thought can resonate with past experience, making both specific images

and abstracted awareness seem to appear in attention. Workers in other

'disciplines use the language of frames, schemes and scripts to talk

about the same sort of experience. The metaphor of resonance does not

answer the question of mechanism, but seems a useful way to speak about

a whole gamut of experiences, in which something becomes meaningful.

Resonance seems to lie at the heart of many cognitive and metacOgnitive

shifts. The sudden insight, the change in viewpoint, seem to be related

to prior experiences which, although not summoned directly, contribute

to the shift of attention. This is the 'mechanism' proposed in Mason,

Burton and Stacey 1982, for 'learning from mathematical experience' via

the use of emotional snapshots which are re-vivified fragments of recent

significant experience.

Grace

Every so often, in our experience, we suddenly find our attention

sharpened, but for no apparent reason. There may in fact be a chain of

subtle resonances and associations, but in order to leave room for the

possibility of spontaneous shifts of attention, a fourth term seems

desirable. We use the word grace rather than hazard or chance, because

it often seems like a gift, a special moment' in which attentionls

enhanced and 'things seem to fall into place'. Since. the act of grace

does seem to be haphazard, there is little more that can be said, and

certainly it cannot be called upon or planned fort

4 THE STRUCTURE OF ATTENTION:

First steps towards a mechanism of shifts.

Our current understanding of cognitive,and meta-cognitive shifts is beat

stated in terms of splitting and diffusing of attention, from monadic,

through dyadic, to triadic form. The transformation of attention has,

we propose, qualities analogous to physical change of state, with the

role of latent heat being taken partly by stimulation from the
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environment, and partly by the self, working on automatising and

integrating awarenesses (Gattegno 1962, Maturana & Varela 1971).

Monadic attention is a state of total immersion and full concentration,

of being caught up in the doing and being blissfully unaware. Dyadic

attention emerges as awareness of distinction, duality, or identity.

Ideas suddenly fall into place, and one becomes aware of the fact of

thinking. The focus of attention becomes itself an example or generic

instance. This is typical of cognitive shifts connected with

mathematical content. Significant metacognitive shifts arise when

attention becomes triadic, sometimes through emergence of investment in

a significant other, an internal watching bird (Rig Veda c1500BC) or an

internal monitor (Schoenfeld 1985, Mason et al 1982), and sometimes

through resonance with significant key words or phrases.

The whole of the theory is summed up for us in the memorable epigram of

Gattegno (1971): 'Only Awareness is Educable'.
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LEARNING MATHEMATICS COOPERATIVELY WITH CAI

Zemira Mevarech
Bar -I Ian University, ISRAEL

The purpose of the present study was to investigate the effects of
computer assisted cooperative learning on mathematics achievement and
learning pcocesses. Participants were 227 pupils in elementary school who
studied mathematics with a Computer-Assisted Instruction program called
TOAM. Results showed that collaboration at the computer tended to be
associated with a higher level of mathematics achievement and more
time-on-task than did the individualized CAI program.The theoretical and
practical applications of the findings for the psychological aspects of
mathematics education will be discussed.

In recent years, researchers and teachers have started to question the

widely accepted assumption that Computer-Assisted Instruction (CAI)

works best in individualized settings (Johnson, Johnson and Stanne, 1985).

Jackson, Fletcher, and Messer (1986), for example, showed that more than

50% of the teachers In England use CAI in pairs or small groups. Jackson

and her colleagues Indicated that teachers prefer to. implement CAI

cooperatively not only becaue of limited sources, but also because of their

belief that students benefit more In cooperative than in individualized CAI

settings. This assumption raises two important questions: (a) does

Cooperative CAI (C-CAI) facilitate learning more than Individualized CAI

(I-CAI)? and (b) to what extent are learning processes different in one

setting than in the other? The present study addressed both questions by

focusing on mathematics achievement and mental effort of elementary

school students who used CAI cooperatively versus individually.
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Underlying cooperative learning models is the fundamental assumption

that learning together improves knowledge-acquisition more thar

competitive and/or individualized learning (Sharan, 1980; Slavin, 1980).

This assumption stemmed from cognitive and social-psychology theories.

From cognitive point of view, learning together provides ample

opportunities for students to verbalize the material, reorganize it in new

schema, and represent it in different ways. According to Webb (1982),

these processes facilitate learning. Moreover, research has shown that

both high- and low- ability students benefit from cooperative learning

(Stallings and Stipek, 1986). The high-ability learners achieve a higher

level of understanding via the process of teaching the slow learners; the

low-ability learners benefit from the instant help they receive from other

children in the small-group. These processes exist also in cooperative

mathematics classrooms. When children solve mathematics problems in

small groups, they help each other to analyze the problem, identify the

"given" and the "wanted", look for appropriate algorithms, and correct

computational mistakes.Thus, we hypothesized that students in cooperative

CAI settings would perform better than students in individualized CAI

settings.

From social-psychology perspective, cooperative learning is presumed

to raise motivation and increase mental effbrt more than individualized or

competitive learning (e.g., Slavin, 1980). Stallings and Stipek (1986)

argued that "individual competition can enhance the motivation of students

who have some possibility of "winning", but research shows that many

children, who. begin the competition at a disadvantage and who expect to

fare poorly, no matter* how hard they try, eventually cease trying
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(Covington and Berry, 1976; Dwick and Reppuucci, 1983). A group reward

structure may relieve motivation problems that many low-ability students

have in individual competition situations" (p. 746). If indeed, cooperative

learning raises motivation, there is reason to .sip! lose that st. 'ts in

C-CAI settings would invest more mental effort than their counterpi.. Ls in

I-CAI settings.

While most studies of cooperative models focused on settings with no.

computers (e.g.,.Sharan, 1980; Slavin, 1980, Stallings and Stipek, 1986),

studies in the area of CAI assessed the effects of the system on students

who worked individually at the computer (e.g., Kul*, Bangert and Williams,

1983; Mevarech, 1985, Mevarech and Rich, 1985; Mevarech and Ben-Artzi,

1987). Only two studies investigated the effects of CAI in cooperative

settings (Johnson et. al., 1985; Mevarech, Stern and Levita, 1987), but they

did not examine mathematics learning. The purpose of the present study Is,

therefore, to compare the effects of C-CAI and I-CAI on mathematics

achievement and on mental effort inveitment.

METHOD

Subjects

Participants were 227 Israeli students In third and fifth .grades.

Subjects studied in two elementary schools which served economically

disadvantaged families as defined by the Israeli Ministry of Education.

CAI Program

The CAI program used in this study Is called TOAM, the Hebrew
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ac nym for Diagnosing and Practicing with Computers.. TOAM program

"c ers" all topics of elementary school mathematics including: four basic

or ations with natural numbers, negative numbers, fractions and

dr rmals; powers; word problems; equations; and geometry. The program is

ided into fifteen strands each includes problems of varying difficulty:

At every session, problems from all strands are presented on the screen.

Students are provided with three attempts to solve a problem correctly.

When all three attempts are failed, the correct answer is presented on the

screen.

The first ten TOAM sessions are devoted to diagnosing purposes. Using

the "testing-tailored" technique, the level of each student is determined

independently of his or her age or class level. Then, each student drills and

practices according to his or her ability level. The computer makes

moment-to-moment decisions regarding the matching of student ability and

problem difficulty levels. The criterion level of mastery is approximately

80% correct answers. At the end of a session, students receive summary

reports Indicating the number of problems provided and the number of

problems solved correctly on the first attempt. Teachers and principles

receive weekly reports describing performances of all students on every

strand and the average performance of the class. In addition, teachers

receive information about special problems students are confronted while

working on the tasks. (More details about TOAM can be found in Osin, 1981).

Measures

Two measures were used In this study: one focused on mathematics

achievement and the other on students' mental effort. Each was
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administered at the beginning and the end of the study.

TOAM's average scores overall strands were used to assess students'

mathematics achievement. The scores are constructed of two-digit

numbers. The "tenth" digit presents the "class" level and the "unit" digit

presents the "month" level within that class. For example, a student whose

score is 54 knows that his or her performance Is equivalent to the

performance expected by a student at fifth grade on the fourth month. As

mentioned earlier, these scores are based only on students' performances

regardless of their age or class level. For example, students can be in

second grade and perform as expected by students in fifth grade and

vice-versa, students can be in fifth grade and perform as expected In

second grade. The norms were determined by the Israeli Ministry of

Education.

Students' mental effort investment was assessed by a short

questionnaire. Following Salomon (1983), students were asked to indicate

the extent to which they Invested mental effort during the CAI sessions.

The Scale ranged from one (very little) to five (very high).

Procedure

At the beginning of the experiment students were randomly divided

into an experimental and control groups. Students in the experimental group

worked in pairs at the computer. They were asked to discuss the problems

presented on the screen, agree on the solution, and then ENTER the answer.

In this group, students took turns at the keyboard so that at each session

another team-mate typed the answers.

The control group continued to work at the computer as they were used
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to do. They learned individually one student at one computer.

Both the experimental and control groups used the same textbooks, CAI

system, and basic teaching methods. The duration of the study was

approximately three months.

RESULTS AND DISCUSSION

Results showed that students in the experimental group gained higher

mathematics scores than students in the control group. During the time of

the study, students who worked individually at the computer gained 2.86

month equivalent grades, whereas students who worked in pairs at the

computer gained 3.10 months equivalent grades. Analysis of Covariance

(ANCOVA) of mathematics achievement obtained at the end of the study

(initial scores served as covariance) indicated marginal significant main

effect for the "treatment'.

Results also showed that students who used CAI in pairs invested

'lore mental effort than students who used the program individually. While

:hanges between post and pre measures of students' mental effort

nvestment in C-CAI settings averaged at .37, that of students in I-CAI

ettings remained'almost the same (.08). ANCOVA of mental effort scores

Dtained at the end of the study (initial scores served as covariance)

idicated significant main effect for the *treatment".

Since this work is now in progress, more details will be communicated

the PME meeting in July.

These findings 11:ripcS teachers' intuition that C-CAI facilitates
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learning more than I-CAI. Evidently, students collaborating at the computer

encouraged one another to invest more effort and tended to gain a higher

level of mathematics achievement than their counterparts learning

individually with CAI. These findings incorporate in previous studies

showing the effects of cooperative learning on mathematics achievement

and time-on-task (e.g., Mevarech, 1985; Stallings and Stipek, 1986).

According to Salomon (1983), cognitive effects of media depends on .a

number of factors including the effort invested, depth of processing, and

special aptitudes of indiviaual learners. Future research may focus on

these factors and relate them to learning mathematics cooperatively and

individually in CAI settings.
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MATHEMATICAL PATTERN-FINDING IN ELLEMENTARY SCHOOL

-- FOCUS ON PUPILS' STRATEGIES AND DIFFICULTIES IN PROBLEM-SOLVING --

Nobuhiko NOHDA, University of Tsukuba, Japan

(Abstract)

Our study 'Problem-Solving' is the current focus on mathematics education in

Japan. The study on analyzing pupils' strategies and difficulties in problem

solving is considered indispensable to improve teaching in mathematics clasiroom

activities. It seems that these strategies and difficulties are influenced

greatly by some social and cultural factors, such as languages, symbols and daily

life-habits etc.. This study is planned in order to make exactly the effects of

social and cultural background on teacher and pupils who engage in problem solving

by means of activities and communications, particularly in reference to share

meaning and use of mathematical words and symbols involved in problem solving. We

have to become more aware of the information processes which consist in the

communications between the teacher's explanations and pupil's understandings

about problem-solving.

Subjects of survey test in this study are selected at random one class of

first, second and third graders in the elementary school and they are living in

Tsukuba City near Tokyo. And then, we will take the second class for the problem-

solving of the teaching experiment. The second-grade class (Male; 17, Female; 18,

Total ;35) we take here in this study, are composed of pupils of another

elementary school which we have carried out the above survey test, but the school

is the almost same conditions as the survey school in Tsukuba City.,

1. Background Research

The process of problem-solving becomes evident when teaching is seen as a

process of interaction between the teacher and learner-and among the learners-in

which the teacher attempts to provide lerners with access to mathematical

thinking in accordance with given problem. This teaching/learning process is

(like all processes between learners) influenced by a number of social and

developmental aspects and factors which can be included in problem-solving. The

commnication between teacher and learner is thus not only conditioned by formal

decisions about goals, content and teaching methods, but it is also strongly

dependent on even more informal aspects in early elementary school, such as the

teacher's words and explanations to the problem-solving, and learner's motivations

to solve the problem and to concern with it.

We will cite an example as the problem-solving activities between teacher and

learners (Fig.3). A brief consideration o Is97 /1 the roles of the teacher at
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different stages of the teaching/learning process illustrates this: instructor as

to teach learner mathematical knowledges and skills (Top-Down); educator as to

make them help problem-solving (Bottom-Up); and decision making as to judge

teaching goes ahead or not, still there repeatly explaines more politely. The

teacher's explication of such roles is intgrated with his specific actions, and

serves to establish his/her background and context for the interactions between

pupils' actual and inner activities in

If you grant this inherent

subjectivity of concepts and,

therefore, of meaning , you are

immediately up against a serious

problem. If the meanings of

words are, indeed, our own Top-awn

subjective how

onnection with any their subjective words.

Teacher Instruction +---

Botom-Up

T I
Problem-Solving

Activities

construction, can

possibly communicate? How could

anyone be confident that the P Pupils' Inner

representations call up in the Activiteis

mind of the listener are at all

like the representations the Meta- Learning

speaker had in mind when he or w

the uttered the paticular words? 1 Pupils' Experiences

This question goeQ to the very

heart of the problem of Fig.1 Problem-Solving Activities

commnications about problem-solving.

Accordingly, the communication used 'problem-solving' as an organizing

principle in Japanese mathematics learning calls for meta-learning under the

teacher's support. This communication views mathematics classroom teaching as

controlling the organisation and dynamics of the classroom for the purposes of

sharing and developing mathematical thinking.

2. Mathematical Problem-Solving in Lower Elementary School

Our study.'Problem-Solving' is the current focus on mathematics education in

our world. The study on analyzing pupils' strategies. and difficulties in problem

solving is considered indispensable to improve teaching in mathematics classroom

activities. It seems that these strategies and difficulties are influenced

greatly by some social and:cultural factors, such as languages, symbols and daily

life-habits etc.. This study is planned in order to make exactly the effects of

social and cultural background on teacher and pupils who engage in problem solving

by means of activities and communications, particularly in reference to share

meaning and use of mathematical words and symbols involved in problem solving. We
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hope to become more aware of the information processes which consist in the

communications between the teacher's explanations and pupil's understandings

about problem-solving, i.e. pupil's hearing and writing down some key word the

teacher says.

Here we use as non-routine problems: problem situations ( Christiansen &

Walter, 1986). We suppose the given problem by the teacher is caused for major

difficulty: How to give a suitable problem to pupils ? In actual practice, every

teacher will have to take his or her own classroom conditions into consideration.

Thus, we will define the problem being used in this paper as follows: the problem

includes both sides of mathematics and pupil/pupils, and then it is a non-routine

problem which two fundamental factors must be contained in the problem in order to

solve by themselves independentlly in mathematics classroom ( Nohda, 1983, 1986).

Here we use the problem of pattern-finding. We shall focus on mathematical

pattern-finding in problem solving. One of the dominant themes of cognitive

research into problem-solving in recent years has been pattern-finding. However,

much of this research has been in non-mathematical contexts ( Lester, 1982). We

will study pupils' acheivement on solving-problems from views of mathematics

education. Thus,we will define the problem as follows: The problem occurs when

pupils are confronted with a task which is usually given by the teacher and there

is no prescribed way of solving. the problem. It is generally not a problem that

can be immediately solved by the pupils.

Pupils are able to solve the problem when they find a suitable 'pattern' in the

problem. On the other hand, they have some feelings of difficulty in solving

their problems when not being able to find a suitable 'pattern'. To study

pupils'mathematical activities by means of the strategies and difficulties of

problem-solving, is to make it clear how pupils find more suitable patterns of

the problems under some interaction between the teacher and pupils, and between

pupils, what strategies they find in their problem-solving, and in what parts they

have difficulties in teaching and learning processes( Silver, 1979).

For the purpose of this study, first of all, we consider the mathematical

activities through the following two cases. The one is the underlying pattern in

the problem, that is, the nature of characterizing the problem itself. The other

is the feature of strategies in pupils' problem-solving. The former means the

structure of problem and the rule in it etc.. The latter is the mode of action

applied in pupils' problem-solving. Therefore, in order that pupils might do

better in their problem-solving, it is necessary that pupils share the

understandings of problem throughsome activities of communications between

teacher and pupils. For pupils who fail to understand the problem or feel

difficult to solve it, the reason would be that there is no sharing the

understanding or way of solving of the task through the interactions between
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tasks and pupils under the teacher's instruction.

To make clear the pupils' strategies and difficulties on problem-solving from

the above viewpoints, we will present a more difficult problem than the problems

found in the textbooks. Then, we will observe the mode of action on pupils'

problem-solving and analyze the process of problem-solving which pupils take to

solve the problem, and whether they arrive at the correct final answer or not. In

studying pupils' pattern-finding behaviors, we may be able to see better how

pupils are solving the problem and examine the steps by which they arrive at their

understanding, planning, solving and checking by means of the interactions

between teacher and pupils' communications( Polya, 1962). The interest here is to

look at the internal thinking of pupils and to attempt to determine how their

thinkings unfold by looking at their work on papers and to act and talk with the

problem between the teacher and some pupils in the classroom by our observations.

3. Survey Test

Subjects in this study was selected at random one class of first, second and

third graders in the elementary school and they were living in Tsukuba City near

Tokyo. This test was carried out May 16, 1986 and that day was in a short time the

biginning of new school year in Japan.

Survey procedures were that let the pupils read themselves the problem after

the classroom teacher was handing the problem to pupils and then the problem out

loud for all pupils to hear, and gave them 15 minites for solving the problem.

Survey Problem

Apple problem (See Figure 2 )

(1) How many apples are there in this figure?

(Count the number without skipping any and

without counting any apple more than once.)

(2) Show different ways of counting the apples.

How many different ways of counting can you

think of?

(3) Of all your ways of counting, mark the one

you think the best.

The feature of this problem's pattern is to

take those as two pairs of apples forming with

5 x 5 row. That is, the pattern is 2 x 5x 5

here. Namely, the apples arranged with 5x 5

can be taken as those set as to pile up with

shiftings lightly. Therefore, pupils found the

same number and rule (pattern) in group of

such formations as the case of Figure 3.
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Table 1 shows only the result of the survey test item (3).

Table 1, Result of Survey Problem

A. Correct

Counting

Grade First Grade Second Grade Third

Male Female Total Male Female Total Male Female Total

Numbers 17 17 34 15 23 38 17 17 34

Correct 9 2 11 8 9 17 13 13 26

No Responce 5 7 12 2 9 11 1 0 1

B. Ways of Counting

One By One 12(9) 10(2) 22(11) 5 (4) 8 (4) 13 (8) 2(0) 7(7) 9(7)

Pairs 1(0) 2 (0) 3 (0) 2(2) 2(2) 4(4)

Group of Five 0 1(0) 0 2 (0) 9(8) 4(2) 13(10)

Group of Ten 0 1(1) 2(1) 3(2) 3(3) 3(2) 6(5)

Aslant 0 4 (2) 5 (3) 9 (5) 0 1(0) 1(0)

The Others 0 1(1) 1(1) 2(2) 0 0 0

Note: ( ) in parentheses in the Table 1 are those pupils of correct answers

The difficulty of this problem lies in that a first glance the pupils feel it

rather difficult to count well because of seemingly complicated problem for the

pupils of the lower elementary school. Especially, for first grade-pupils, it is

difficult for them to count well after arranginig and regrouping in the same

number of those or in the concept of pairs, although it is easy for pupils to

count the number of up to fifty with numeral. They gain almost the same numbers as

the correct answers, errors and no responses.

For second grade-pupils, it is easy for them to count apples being arranged

and regrouped with the concept of pairs, group of fives and tens, and aslant.

About half pupils gain the correct answers almost using one by one counting. They

could not almost aquire the well-counting as group of fives or tens.

For third grade-pupils, pupils almost gain the correct answers and two thirds

pupils are the well-counting after the arranging and regrouping with the concept

of pairs, group of fives and tens.

Problem-solving we are concerned 'With here, is needed to share and develop of

mathematical patterns as well-counting of the arranging and regrouping according

to the concept of pairs, group of fives or tens on second grade-pupils. To study

our problem-solving through the teaching expapeanitI we.cannot take the first
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grade-pupils sharing and developing of mathematical pattern as the well-counting

in this case, and need not teach the third grade-pupils the well-counting of

apples. Thus, we will select the second grade- pupils for our study and to take the

second grade class for the teaching experiment.

3.Problem-solving in the second-grade classroom

The second-grade class (Male; 17, Female; 18, Total ;35) we took here in this

study, were composed of pupils of another elementary school which we had carried

out the above survey test, but the school was the almost same conditions as the

survey school in Tsukuba City. This lesson was done June 6, 1986.

A classroom teacher started as follows: pupils were each given a picture of

. 'apples' which was a larger picture than usual one and put the same picture of

'apples' on the blackboard, and then, the teacher asked the pupils 'How many

apples are there.in this figure ?" and explained some notinons to them; 'Counting

the number under well-consideration without leaving some out or counting doble.'

After he explained to them the problem, he wrote the same informations about it on

the blackboard as follows:

What way of counting and how many ways of counting do you think of?

Of them all, encircle your way of counting as you'think good and suitable in

this problem.

Pupils wrote their answers on the served sheets for about ten minutes after

teacher explained the problem. While the teacher were observing and looking

through pupils' activities of solving the problem in details, he advised first,

some of pupil to take care of counting, and next, made them respectively to think

out more ways of counting, and then he found out their different ways of the

solutions as follows:

(1) Pupils almost were checking and counting apples with one by one vertically

or holizontally, or with the filled numerals in the sketch of each apple. Some

pupils mistook to count apples in their processes in this case.

(2) One fifth pupils were counting apples in pairs and some pupils who counted

2, 4, 6, 8, and so on continued to add apples till fifty, and the pupils almost

gained the correct solution but a few pupils had the results in the impossibility

of calculating 2 x 25 in this case.

(3) Four pupils who counted five apples together counted accurately and

relatively quickly in this case.

(4) Nine pupils who counted ten apples together well-counted correctly and

quickly in this case.

(5) A rather small number of the pupils used a symmetry of figure as the way

of aslant counting. In this case, adding numbers aslant was the key.

Note: Almost all pupils made counting by more than about one method in this.

115:?-0
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lesson.

4. Pupils' activities in the classroom

When pupils almost had finished to count and check the apples by themselves,

first, the teacher asked them whether they counted the apple correctly. This was

a beginning of a communication through the interactions between the teacher and

the pupils for the sharing of the correct answer. This was an important point that

the teacher judged his teaching on ahead or not. This decision making of the

lesson was important rolles of the teacher. Then, after the teacher explained

pupils to select to better one commensurate with their countings, he pointed out a

representative pupil respectively of the five cases above mentined and let them

explain of their ideas according case from (1) to (5) cases at the front place

beside the teacher of the classroom.

In the case of (1), when a girl explained her idea, almost all pupils nodded

to show that they agreed and understood one by one counting. There was an

existence of the correct counting between the pupils in the classroom.

Furthermore, the teacher advised a few pupils who could not count them correctly,

made them to count again more careful. Thus, all pupils gained the corect answer

and felt to satisfy with their needs to solve the problem. These processes of

teaching and learning activities were the important communication for the aims of

solving the problem in cooperation with the teacher and the pupils.

In the case of (2), when a boy explained his idea, pupils almost understood

the count of apples in pairs. There was the existance of the sharing of the

couning between the pupils. And then, the teacher advised the others pupils who

could not add them correctly, to add again more careful. Thus, all pupils had the

feeling of satisfications, too. These processes of activities were the meaningful

commnication between the teacher and the pupils for the aims of mathematical

solving the problem. Furthermore, Some pupils replied the case (2) when the

teacher asked them 'Which is better method of thecounting apples between the.

case (1) and (2)?.. This was more advanced negotiation because of his asking to

make their counting with mathematical views.

In the case of (3), when the other girl explained her idea, many pupils easily

understood her explanation and appreciated it. And in the case (4) pupils

appreciated the good explain by an excellent boy. We were impressed what pupils

had understood the mathematical patterns could be attained through the processes

of their commnications. All pupils had appreciated the grouping of fives and tens

of mathematical pattern of the problem, and the teacher did not need to expalain

the best ways of counting more details. They thought out themselves the best ways

of counting from their communication without the direction of teacher.

In the case of (5), when a fanny boy explained his idea, most pupils seemed
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to reject it. For most pupils felt it troublesome to count the numbers and to

calculate the numbers in adding. This was another important aspect for their

communication, because they could find easily the ways of counting as the case (3)

and (4), and did not really conceive that 1 4-3 4-5 4-7 4-9 could be calculated

as rather easily (1 +9 ) +( 3 +7 ) +5.

5. Disscussion on mathematical problem-solving

Seen the strategies of solving here, first almost pupils take them one by one

counting and next some pupils find the same number (pattern) in grouping of the

length-width formation and a few pupils take the slanting formation. Many pupils

find the same number and rule (pattern) in group of such formation. The difficult

points here that in spite of the first instruction by the teacher, about half of

the pupils counted twice and forgot some numbers to count. For the purpose of

overcoming these difficulties, the mathematical ideas of grouping have developed

by the human race for a long time ago.

We have to need the communication between the teacher and the pupils as

follws: the teacher advises pupils who can not find the correct patterns, to find

the features of problem and to count again apples using the ideas of grouping

more careful. Thus, almost. pupils understand the ways of counting from the cases

(1) to (2), or from (2) to (3), or from (3) to (4) except case (5). Under the

teacher's direction, they have the feeling of satisfications to learn new ideas

and concepts in the mathematics lessons. A series of these communications open to

the interactions between the teacher and the pupils for the main aims of solving

the problem.

Furthermore, In the case of (3) and (4), for examples, we are impressed that

pupils have the real appreciations of sharing of mathematical patterns by the

processes of codonications between pupils by themselves. Pecause, all pupils have

appreciated the grouping of fives or tens for counting the apples. They think out

themselves the best ways of counting the apples with their communications without

the directions of teacher. This is the most advanced communications, because the

best counting of grouping which is developed mathematically by the human race, is

found by their learnings.
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THE CONSTRUCTION OF AN ALGEBRAIC CONCEig
THROUGH CONFLICT

Alwyn Olivier
University of Stellenbosch

This paper focuses on one aspect of pupils' interpretation of literal sym-
bols in elementary algebra (generalized arithmetic), namely that different
literal symbols necessarily represent different values. The underlying
causes for the misconceptions are investigated. A teaching experiment in-
ducing conflict and reflection to remediate the misconception is described
and analyzed.

From a constructivist point of view, students' misconceptions are never arbitrary or al-
together unreasonable. Misconceptions are seen as emerging from some interaction be-
tween experience and other existing concepts the student has (perhaps themselves
misconceptions). Misconceptions are crucially important to teaching and learning for at
least two reasons:

misconceptions form part of the student's conceptual structure that will in-
fluence further learning, mostly in a negative way, because misconceptions
generate mistakes.

misconceptions are highly persistent and resistant to change through instruc-
tion. They are maintained by their ability to distort or reject incompatible in-
formation and by the support from other concepts in the student's conceptual
structure.

In this paper we focus on the often-observed and well-documented misconception con-
cerning the meaning of literal symbols in elementary algebra (generalized ifithmetic),
namely that different literal symbols necessarily represent different values (Kiichemann,
1981; Booth, 1984a). A student's response of "never" to the following question usually
demonstrates this misconception (Kiichemann, 1981):

When is the following true always, never or sometimes?
L+M+N=L+P+N

The pervasiveness of this misconception is illustrated by the following data for the ques-
tion above: In the CSMS study (Kiichemann, 1980) 56% and in our study involving more
than 40 000 students (Olivier, 1988) 74% of 13 year olds answered "never". The resist-
ance of this misconception to change is illustrated by the poor improvement in perfor-
mance by average students in the SESM project, despite a well-designed teaching
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programme that was successful in ameliorating other algebraic misconceptions (Booth
1984a). Booth (1984b) attributes the persistence of this misconception to maturation-
linked cognitive factors, i.e. that understanding depends on the attainment of a certain
general developmental cognitive level. Kiichemann (1981) links understanding of gener-
alized number to Piaget's late-formal stage of development. However, the possibility re-
mains that certain experiences (instructional interventions) may well address this
misconception successfully, disproving the developmental hypothesis. For instance,
Sutherland (1987), in studying students' understanding of variables in algebra in a Logo
environment, concludes that "Whether or not pupils can make the links between vari-
able in Logo and variable in algebra appears to depend more on the nature and extent
of their Logo experience than on any other factor."(p.241) This promising approach
nevertheless showed limited success in relation to the misconception under discussion.

SOME EXPLANATIONS

Searching for underlying causes of this misconception, we conducted interviews with ten
students randomly chosen from the eighth grade population of semi-urban first-world
secondary schools. Each interview was based on a subset of the following questions:

1. When is the following true always, never or sometimes?

L+M+N=L+P+N
2. If a + b = 4, what values of a and b will make the sentence true?

3. True or false: If 2a + 3b = 20, then a = 4 and b = 4 is a solution of the equation.

4. Solve for x and y: x + y = 6
2x + y =9

5. Construct an algebraic expression for the total points scored by a team in a rugby
match if they scored only tries (counting 4 points each) and penalties (counting 3
points each). Use the expression to find the total points if a team scores

(a) 5 tries and 2 penalties (b) 3 tries and 3 penalties

The following is a summary of the findings of the interviews and a situational analysis.
All students interviewed demonstrated the misconception in questions 1 and 2.

For four students answering "never" in question 1, the literal symbols did not represent
numbers, but names of objects like apples and bananas or abbreviations for names of ob-
jects (e.g. a stands for apple) or as an object in its own right (letters of the alphabet).
These students are simply continuing their arithmetic framework of knowledge (Booth,
1984b), where literal symbols are often used as abbreviations for units (e.g. 4 m). Also,
in introducing algebra, teachers often do not distinguish between symbols and their refer-
ents, or use objects (apples and bananas) as referents instead of numbers to facilitate
mechanical manipulation and inhibit conjoining (e.g. a + b = ab).
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A further four students viewed the literal symbols in question 1 as representing unique,
unknown values, from which it then follows that different symbols necessarily represent
different values. This mind set may be established through the early emphasis on linear
equations in the curriculum. It is also the outcome of experience. One student mentioned
that he had "never, ever" seen different literal symbols stand for the same number (he
was referring to substitution exercises of the type

"If a = 2 and b = 3 evaluate (1) ab (2) a + 2b etc").
Despite their handling literal symbols as objects or unique unknowns in question 1, all
ten students accepted more than one replacement of values in question 2, although no
student admitted a = 2 and b = 2, even on being prompted on the possibility. They were
all quite adamant about that. Two reasons were identified.

One reason is that pupils, despite working with numbers, do not seem to work with num-
bers in an abstract sense, but, to give meaning to the situation, introduce their own con-
crete referents for the literal symbols (e.g. "things" or apples and bananas) by reversing
the modelling process. The following extract illustrates the point:

(Interviewer: I; Frieda: F explaining why a x b in question 3)
F: I do not know In what circumstances the equation was asked. But if the a is the

abbreviation for the apples and the b of the bananas, they must have different sym-
bols.

I: So a and b are abbreviations for the apples and bananas.

F: No, I would rather say It's a symbol for the apples and bananas.

I: A symbol for the apples?

F: Yes, that you use to indicate what each number is. If you say a is equal to 4, then
you know that if a is the symbol for apples, then you will Immediately know that a
stands for the apples and that 4 apples were bought.

Frieda's conceptualization should allow her to buy an equal number of apples and bana-
nas, but her verbalizing "apples" instead of "number of apples" means that in the end
the meaning degenerates to "apples" and "bananas", objects which should be different.

The second underlying mechanism for not allowing a = b =2 as a solution to question 2,
and in general not allowing different literal symbols to take equal values, stems from a
combination of other valid knowledge and students' faulty logical inferences. Students
are very much aware of the convention that the same literal symbol in the same express-
ion must take the same value, e.g. in x + Zr. From this they infer that the converse, or
even the inverse also holds:

°Proposition: the same letter stands for the same number.

o Converse: the same number stands for the same letter.

o Inverse: "Not the same letter" stands for "not the same number".

The following two extracts illustrate the converse reasoning to questions 1 and 2 respec-
tively:
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if they (M and P) were the same, you could just as well have used L + P Instead
of L + M. If P and M were the same number, then you cannot have P and M, be-
cause M and P represent different numbers, but If they (P and M) were the same
number, it Is the same letter that is used."

"2 plus...no It cannot be...otherwise It would be x + x = 4. (silence). 2 plus 2 Is
4, then you cannot have 2 plus 2, because It Is the same numbers andIt must be
different numbers."

Another interesting phenomenon is that all studentsdemonstrated the misconception in
questions 1 and 2, while all students supplied correct responses to questions 4 and 5. Also
of interest is that no student noticed any contradiction in their responses to the different
contexts.

Lawler's (1981) theory of microworlds (cognitive structures) may offer an explanation.
Students are operating in different distinct and separate microworlds when solving the
two classes of problems. Lawler views the microworlds as actively competing with each
other, working in parallel to solve a problem. Which microworld provides an answer to
a problem depends on how the problem is posed and the particular knowledge the dif-
ferent microworlds embody. The competition of microworlds usually leads to the domin-
ance of one and the suppression of others. To Lawler, resolving the misconception
requires the cooperation, interaction and integration of microworlds whereby confusion
between related competing microworlds is suppressed by a new control structure.

Davis (1984) also suggests that separate, conflicting "frames" may be created. A frame
acquired early and developed well may prove to be extremely persistent, so much so that
it may sometimes continue to be retrieved inappropriately long after one has become
fully cognizant of the conditions under which it is or is not used. Put differently: a new
appropriate frame may be available, but the old frame continues to exist. The source of
such misconceptions lies in retrieving the wrong frame and not recognizing the retrieval
error. As for remediating the misconception, Davis advocates making sure that pupils
are aware of both frames, and of the likelihood of incorrect choice.

From our analysis of the data it is clear that most pupils possess two apparently separate
schemas for literal symbols. One is the letter-as-object schema, which stresses the dif-
ference of different letters and which is appropriately used to make routine manipula-
tion of symbols automatic (Skemp, 1971). The other is the letter-as-generalized-number
schema, which should include the possibility that different literal symbols can take the
same value. The essence of the observed misconception lies in the fact that the letter-as-
object schema is inappropriately invoked in cases were it does not apply. As such the let-
ter-as-object schema has become an obstacle to further learning, inhibiting the
letter-as-generalized-number schema.

A TEACHING EXPERIMENT

For the purposes of a teaching experiment the format of the interviews was changed, by
confronting students with the contradictions in their responses (questions 1 and 2 versus
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questions 4 and 5), in an effort to induce cognitive conflict and to help students to reflect
on their own concepts and mental processes. The objectives of the further investigation
were:

to determine the strength and stability of students' beliefs concerning the mis-
conception, and

to determine the success of cognitive conflict as a teaching strategy to remedi-
ate the observed misconception.

An additional 30 students were interviewed. Of these, 22 demonstrated the misconcep-
tion in questions 1 and 2, with correct responses to questions 4 and/or 5, before being
confronted with the anomaly in their responses. After these confrontations the students
were evenly split between

persistence in the misconception

total confusion

successful remediation.

In the first category of students, the belief in the misconception was so strong that, on
being confronted with the discrepancy in their responses, they chose to alter their initial
correct responses by also excluding equal values in questions 3, 4 and 5, or reconciled
the discrepancy by inventing all kinds of conditions for equal values in questions 3, 4 and
5, in preference to modifying the misconception and allowing equal values in questions
1 and 2. For example, Jacques, on comparing his response to question 4 (x = y = 3) with
his response in question 2 (where he insisted a x b):

"You can say that x = y, because you proved that x = y. See, you have proved
thatx = y. But here (question 2) nothing Is proved yet, so you cannot say that a =
b."

Similarly, students defended equal values in question 3 and 5(b) "because they say so",
but excluded a = b in question 2.

The second group of pupils typically obtained equal values in questions 3, 4 and 5. Then,
when their attention was drawn to the fact that they would not allow equal values in ques-
tions 1 and 2, they altered their responses to questions 3, 4 and 5, only to be convinced
again that equal values were common sense in 5(b), yet they would not accept equal
values in 1 and 2. At that stage they were totally bewildered and confused.

Consider Thys as an example. After successfully completing 5(b), his expression was
4a + 3b, he was asked why he did not allow equal values in question 2.

T: Oh no! Yes...it cannot be the same! (referring to 5(b)). It cannot be the same...I
thought...I'm afraid I, I...(silence).

I: What was a?

T: a...a was 3.

I: What was b? C.EST COPY AVAILABLE
T: Also 3.
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I: Can they be?

T: Nol

I: But we just did a problem were they can!

T: Yes, but, but then that should have been an a (points at b).

I: What does b stand for?

T: The penalties.

I: And a stands for the ...

T: It's the tries.

I: Can we score three tries?

T: Yes.

I: Then A Is 3?

T: Yes.

I: Can we score three penalties?

T: Yes.

I: Then b Is 3?

T: Er...No, it must be an a.

I: Can the expression that we must write for the team's total, can it be 4a + 3a?

T: Yes.

I: What does the a stand for?

T: It is the tries.

I: And what about the penalties?

T: It must also be a...oh no! (silence). I'm afraid I must now be totally con-
fused...(silence)...No, I don't know.

The third group of students successfully altered their misconception responses for ques-
tions 1 and 2. They were all able to re-interpret the letters in these questions as letters
with added semantic meaning (Rolnick, 1982), i.e. letters that mean more than a num-
ber they mean a number of things. Carl, for example, after completing 5(b) and being
confronted with the discrepant meanings: "Oh, so a can be the number of tries and b can
be the number of penalties and a team could have scored 4 times" (question 2).

DISCUSSION

In summary, one-third of the students interviewed did not experience conflict between
their discrepant meanings of literal symbols. Another one-third of the students experi-
enced the conflict quite emotionally, and although they were confused and unable to re-
solve the conflict, it is possible that they may do so with more experience and/or
reflection. Although the other one-third of the students were successful in the interview
situation, it is of course not claimed that the changed perspective was permanent. It was
not possible to follow up any of the cases.
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The relative ease with which the successful group seemed to correct their misconception
would suggest that the cognitive structures necessary for such assimilation were already
available to the students. It is suggested that the main factors distinguishing successful
students are the absence of the converse-flaw and avoidance of the letter-as-object trap.
The teaching experiment did not address the converse-flaw. It is suggested that situations
involving semantically laden letters have a constructive role to play in resolving the mis-
conception, because they render equal values for different letters intelligible and help
to form a bridge between the meaning of letters in language and its meaning in mathe-
matics. The complexity of the pitfalls in language when viewing letters as objects is de-
picted in Fig. 1 (compare the extracts for Thys and Frieda). Fig. 2 shows the simplicity
of a correct interpretation of semantically laden letters. Students who view letters as ob-
jects must negotiate more transformations and make more errors. It was observed that
unsuccessful students introduced objects even in abstract numerical problems.

Figure 1
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ABSTRACT

This paper deals with gender differences in the prediction
of 1) the choice of math as an examination subject, and 2)
the achievement in math. Predictors were gender, attitude
towards math, whether favored vocational training requires
math and optionally achievement and choice. The attitude
was assessed by two approaches: scale-construction and the
Fishbein model. Multiple regression analysis showed that
more than 70% of the variance in math choice could be
predicted against 50% in achievement. Gender differences
were profound in the prediction of math choice. These
differences could be attributed to gender differences in
favored vocational trainings.

INTRODUCTION

One examination subject has the special attention of the Dutch

government, namely: mathematics. Mathematics is considered to be

important. It is required for most vocational trainings and the

consequential professions generally are less struck by unemployment

than those which don't require math. Based upon these facts the

government has started a national propaganda campaign "Choose exact

sciences". Another reason was given by the fact that generally more

boys than girls choose mathematics. So girls are likely to decrease

their chance of finding jobs due to their choice of examination

subjects.

In this paper the choice of mathematics as an examination subject is

the main topic. Which are the main predictors of the decision to

choose mathematics as an examination subject and do boys differ from
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girls in this respect? This question raises five variables of

interest: the sex of the pupil (SEX), the choice of mathematics as an

examination subject (CHOICE), whether mathematics is required for the

favored vocational training (REQUIRE), the achievement in mathematics

(ACHIEV) and the attitude towards mathematics (ATTITUDE). This

attitude consists of several sets of items, which will be discussed in

the method section. We assume that SEX, REQUIRE, ACHIEV and ATTITUDE

influence the math choice, and are therefore predictors of CHOICE. The

next question is whether the relation between REQUIRE, ACHIEV,

ATTITUDE and CHOICE differs between the sexes. We acknowledge the

existence of interrelations between the variables, but they are not

our main interest. The second topic of this paper concentrates upon

the prediction of achievement in mathematics. Specifically, which are

the main predictors of the achievement in mathematics and do boys

differ from girls in this respect?

METHOD

In May and June of 1986 the research was undertaxen in general

formative secondary schools of all three levels of difficulty. In this

paper we concentrate on the results of the intermediate difficulty

level. This kind of secondary school takes five years. In the third

year the examination subjects are chosen. Therefore, in this paper we

report mainly the results concerning pupils in the third year (age:

14, 15 years). The total number of pupils was 354; 210 girls and 144

boys. The pupils filled out questionnaires during a subject hour at

their schools. The questionnaire contained a large number of

variables, including the variables of our interest:

CHOICE: "Are you going to choose mathematics?" Answer possibilities:

certainly not (1), probably not (2), do not know yet (3), probably

(4), certainly (5);

REQUIRE: The pupils were asked to state their favored vocational

training. If any, they, indicated whether mathematics is a requirement

for entering it: 193



- 521 -

ACHIEV: The pupils were asked to give the mathematics marks on their

last two school-reports. The mean of both marks was used as achievement-

index. The Dutch rating-system ranges from 1 (very poor) to 10

(excellent);

ATTITUDE: We adopted two different approaches to assess the attitude

towards mathematics;

ATT : Item analysis and scale construction.

In this approach three main attitude domains were distinguished:

a. Pupils' personal attitudes (23 items; 4 subscales)

b. Pupils'perception of math teacher's behavior (16 items; 3 subscales).

c. Perceived sex-role ideas of the math teacher (10 items);

ATT II.: The Fishbein model (Ajzen & Fishbein, 1980).

The model distinguishes two components that influence the intention to

perform (a) behavior.: the 'attitude' towards the behavior and the

'subjective norm' about the behavior. The attitude-component consists

of behavioral beliefs, i.e. expected consequences of the behavior, and

evaluations of these beliefs. The subjective norm-component consists

of normative beliefs, i.e. perception of the degree to which important

others favor the behavior, and motivations to comply, i.e. the degree

to which these perceptions are complied to.

After multiplication of the probability ratings (-3=certainly not,

3=certainly) by the importance ratings (1=very unimportant, 5=very

important) of the behavioral beliefs twelve 'attitude'-components

resulted:

qualifying for an education which requires math, qualifying for a profession which

requires math, not being able to choose another examination subject, increase of

professional possibilities, the time spent on math home-work, passing the examination at

first try, need of additional lessons, increase of grade point average, kind of teacher

((un)friendly), kind of classmates ((un)friendly), (foster)parents. satisfaction.

Eight subjective norm-components resulted after multiplication of the

probability ratings (that other person favored the math choice;

-3=certainly not, 3=certainly) by the compliance ratings (1=no

compliance, 6=much complicance):

(foster)father, (foster)mother, elder brother. elder sister, friend, math teacher,

class mentor, schoolcounsellor.

For more details on this method, see Kuyper & Otten, 1988.
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RESULTS

The variables of interest showed the following results. Of the boys,
81% intended to choose math (category 4+5 vs 1+2) versus 43% of the
girls; 63% of the boys favored a vocational training which requires
math, versus 21% of the girls. The mean math mark for the boys is 6.1
(sd=1.2) versus 5.9 for the girls' (sd=1.2).

The item analysis and scale construction approach consisted of
principal component analysis followed by varimax rotation, and
assessing Cronbach's alpha for items belonging to one factor (absolute
loading 1,...50). Finally a scale-value resulted by calculating the mean
of the scale items. Analyses of the items within each attitude domain
resulted in the following eight scales:
'pleasure in math' (6 items, aw0.90); 'difficulty of math' (12 items, aw0.86);
'sex-specifity of math' (3 items, aw0.65; e.g. "girls don't need math"); 'usefulness
of math' (2 items, a.0.71; e.g. "math is useful for society"); 'perceived knowledge
transfer by teacher' (8 items, a=0.86; e.g. "encourages asking questions");
'perceived relevance transfer by teacher (4 items, a -0.74; e.g. "tries to convince
the pupils of the relevance of math for later life");

'perceived sex-specific behavior
of teacher' (4 items, aw0.66; e.g. "asks girls easier questions than boys"):
'perceived sex-role ideas of teacher' (10 items, aw0.87; e.g. "math is a subject for
males").

To answer the two main questions of this paper we used the technique
of multiple regression analysis. The inclusion of predictors in the
equations was. determined by stepwise selection (forward and backward
elimination). Missing data were handled by the SPSS-X option pairwise
deletion. In addition to an 'overall' analysis, seperate analyses for
boys and girls were performed.
I Prediction of the math choice.
The predictors are SEX, REQUIRE, ACHIEV and ATT I. Of course SEX is
excluded from the boys' and girls' analysis. Another regression
analysis was performed analogous to the former except for replacing
ATT I by ATT II.

The overall analysis, including ATT I, yields an R of .84 (70% of
the variance in CHOICE accounted for). In the girls' analysis 67% of
the variance is accounted nix', in the boys' analysis 61%. The
6-weights are an indication of the relative importance of the
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predictors. Table 1 displays the 6-weights of the predictors included

in the equations.

Table 1: Multiple regression models for the prediction of CHOICE using as SEX,

REQUIRE, ACHIEV and (ATT I) as predictors: R2 and 8-weights.

overall girls boys

R2 .70 .67 .61

SEX .08

REQUIRE R .40 .30 .62
ACHIEV .15 .18

ATT I:

pleasure .17 .22

usefulness .12 .15

difficulty -.22 -.23 -.31
knowledge transfer -.08

The main predictors are REQUIRE and difficulty. The negative 0-weight

of difficulty indicates that the more difficult math is, the less math

is chosen. The negative B of knowledge transfer seems surprising,

because it indicates the more knowledge transfer, the less math is

chosen. However, this effect is due to the removal of the covariance

between CHOICE and it's former predictors from the initial correlation

between CHOICE and knowledge transfer (r =.13), resulting in a negative

partial correlation coefficient (r.-.07). SEX is included in the

overall equation indicating that, despite the contribution of the

other predictors, SEX contributes to the prediction of CHOICE in such

a way that more boys choose math. The differences between the girls'

and boys' solution are the following. First, the boys' equation

accounts for less variance in CHOICE than the girls' equation. Second,

the boys' equation is more 'economic': only two predictors versus five

girls' predictors. Third, the large influence of REQUIRE on the boys'

choice is striking. Lastly, the girls also include the predictors

pleasure and usefulness.

The overall equation, including ATT II, accounts for 76% of the

variance in CHOICE. The girls' equation accounts for 72% and the boys'

accounts for 64%. Table 2 shows the B-weights of the predictors

included in the resulting models.
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Tabel 2: Multiple regression models forthe prediction of CHOICE using SEX,

REQUIRE, ACHIEV and (ATT II) as predictors: R2 and 8-weights.

R2

overall girls boys

.76 .72 .64

REQUIRE .29 .18 .46

ACHIEV .09 .14 .21

ATT II:

education .09 .12

no other subject .09 .08

future possibilities .09 .09 .14

pass at first try .15 .20 .28

extra lessons .11

kind of teacher -.07 -.10

parents' satisfaction .10

mother .14

friend .10 .16

math teacher .15 .26

The main predictors are REQUIRE, pass at first try and ACHIEV. In this

analysis SEX is not included in the equation. The differences between

the boys' and girls' equations are similar to the differences noted

above. First, the boys' equation accounts for less variance in CHOICE

and is more 'economic': four predictors versus ten girls' predictors.

Second, the large influence of REQUIRE on the boys' choice is striking

again. Third, the girls' model shows the inclusion of 'other personk

predictors: friend, math teacher, parents' satisfaction and kind of

teacher. The negative B-weight of the last predictor originates from a

negative initial- and partial correlation coefficient (initial r=-.03;

partial L=-.10), indicating the negative influence of the attitude-

component kind of teacher on the math choice.

II Prediction of the math achievement.

The criterion is ACHIEV and the predictors are SEX, CHOICE, REQUIRE

and ATT I. SEX is excluded from the boys' and girls' solution. The

results are shown in Table 3.
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Table 3: Multiple regression models for the prediction of ACHIEV using SEX.

REQUIRE, CHOICE and (ATT I) as predictors: R2 and 8- weights.

overall

R2 .52

SEX -.18

CHOICE .26

ATT I:

difficulty -.56

sex-role idea teacher .09

girls boys

.47 .58

.27 .19

-.47 -.64

The overall analysis yields an R of .72 (52% of the variance in ACHIEV

accounted for). In the girls' analysis 47% of the variance is

accounted for, in the boys' analysis 58% is accounted for.

The main predictors are difficulty and CHOICE. The negative B of

difficulty indicates the more difficult math, the lower achievement.

The initial correlation between ACHIEV and SEX is .05, which could be

expected considering the mean math marks of the sexes (boys: m=6.1,

girls: m=5.9). However, partialing out the covariance between ACHIEV

and it's former predictors results in a partial correlation

coefficient between SEX and ACHIEV of -.17, which explains the

negative 8-weight of SEX. Surprising is the inclusion of perceived

sex-role idea of math teacher, indicating that the more

sex-stereotyped opinions are attributed to the teacher, the lower the

achievements are. There are no striking differences between the girls'

and boys' models.

DISCUSSION

Returning to the first topic, prediction of the math choice and sex

differences in this respect, we may conclude the following. First, it

appeared that the choice of math could be predicted to a large extent.

In both analyses (ATT I/II) more than 70% of the variance in math choice

could be predicted. Second, the achievement in math, the attitude
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towards math and whether the favored vocational training requires math

are significant predictors of the math choice. Third, sex proved to be

a significant predictor for choice of math using the scales as

predictor set. However, sex was not included in the regression

equation when using the Fishbein predictor set. When the effects of

these predictors were partialled out, sex was not significantly

related with choice of math. Therefore it seems plausible that

sex-effects can be explained by means of these predictors. The results

of analyses, separately carried out for boys and girls, supports the

above conclusion even more.

First, it seems that boys' choices are predominantly influenced by

pragmatic factors such as difficulty of math, achievement in math,

passing the examination at first try and especially whether the

favored vocational training requires math, whereas girls' choices are

also influenced by other persons and pleasure in math. I't seems that

whether or nit the favored vocational training requires math

determines the boys' thoice of math above all. Girls' choice behavior

is less prescribed by the conditions of the favored profession.

Second, girls favor less vocational trainings requiring math. Third,

no significant differencesin math achievement between the sexes was

observed. Therefore we may conclude that the boys' preference for

vocational trainings requiring math regulates their choice behavior in

achieving this goal, whereas girls' preference for vocational

trainings not requiring math allows their math choice to be influenced

by other factors such as pleasure in math. This implies a more central

role of the favored vocational trainings in further research after

gender effects on math choice.

The second topic, prediction of math achievement and sex differences

in this respect, leads to the following conclusions. Math achievement

could not be predicted as well as math choice (about 50% of the

variance accounted for). The choice of math and the difficulty of math

appeared to be the significant predictors. Interesting is the absence

of whether the favored vocational training requires math as predictor.

Apparently this factor doesn't influence the math achievement, whereas

it influences the math choice for a great deal. The low predictability

of math achievement might be due to the absence of predictors like

intelligence, mathematical ability, motivation and invested effort.
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These predictors might also explain the inclusion of sex as a

predictor, despite the absence of sex differences in achievement.
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WHOUTICAL %SUES AHD PSYCHOLOGICAL HYPOTHESES.

Janine Rogalski, CRRS.

Aline Robert, Universit6 Paris VI.

Abstract
any researches have recently emphasized the role of
netacognition in problen-solving. This paper focuses on
methods as part of this field. Does it exist nethods in
problem- solving in a given mathematical field (geometry
for instance)? Mat are the relationships between
methods and classes of problems? Is it possible to teach
methods? Can such a training be efficient for managing
and/or acquiring conceptual knowledge? That problems and
that didactical environments are good °candidates° for
such a training" Does it exist an optimal moment in the
process of knowledge acquisition for teaching methods?
we insert these questions in a constructivist view of
knowledge acquisition, and propose in this framework
some psychological and didactical hypotheses based upon
empirical studies.

Introduction

Hetacognition has been studied from several points of view.

Research on netacognitive development became an important elenent in

cognitive psychology: how does 'knowledge about knowledge° arise in

child development, what role does it play in operational knowledge?

This concerns a variety of cognitive activities, only a part of then

being linked to problen-solving (Flavell, 1977). we want to underline

the attenpt presented by Pinard to develop a post -piagetian analysis

of the origins of netacognitive knowledge and self-regulatory

processes (Pinard, 1986). His study extends the question to a

life-span perspective; it allows to take into account the problem of

complex acquisitions such as nathenatics, and scientific or

professional knowledge. Dore specific research was engaged in

psychology of nathenatical education, concerning problem-solving.

Dost of then emphasized the positive role of netacognition in

nathenatical performance, through a theoretical analysis (Garofalo

and Lester, 1985) and/or by analysing students strategies in

201



- 529 -

problem-solving (Galbraith, 1985; Garofalo, Kroll and Lester, 1987).

Some of these studies are directly concerned with the question of

teaching conpetences for problem-solving (Schoenfeld, 1985; Garofalo

and al., 1987). Otherwise, near questions arised in the field of

artificial intelligence and education: how to integrate °reasoned

explanations° and 'reasoning on reasoning° is a crucial point in

designing intelligent tutoring systems (Vivet, 1987). (1).

Our own present purpose is to specify some questions dealing

with a specific area of metacognition : aethods in mathematical

problen-solving. First, we will precise what we mean by °Isethods°-(by

respect to students' heuristics or and by respect to

mathematical algorithms). tre express some central theoretical issues

concerning the status of methods in a given conceptual field:

relationships between °local° acquiSitions (knowing and knowing -how)

and °global° organisation of problem-solving; relationships between a

method and the °activation° of soon acquired knowledge. Secondly we

present cognitive and didactical hypotheses: hoe and when to teach

methods; what are the expected effects on knowledge acquisition and

on knowledge "managenent°. Mese hypotheses are based upon a

theoretical analysis and upon empirical results in cognitive studies

on decision-making and planning, on studies about teaching methods in

other scientific or professional domains, and on detailed analysis of

the, role of teaching methods in geometry problem- solving with

advanced level studentS.

alik/ILLARAZIthieLtRRA/Ra

A method is related to a class of problems. It expresses the

connun points in efficient problem-solving in a field. It does not

describe students' behavior. Roughly speaking, a method describes or

even prescribes efficient ways in solving a given class of problems.

It can be defined in terns of the functions fulfilled by respect to

task requirements. A method can be considered as an invariant in

problem- solving procedures linked to an invariant related to the

class of problems (Robert, Rogalski, Sarturcay, 1987; Rogalski, 1987).

Consequently, the specification of a method is related to the

extend of the considered class. A -method defining an organisation of

phases in problem- solving as °problem understanding", °orienbation°,
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'organization', 'execution', 'control' is /and for whatever type of

problems. It may precise a lot of 'ORL' to do, but a few on ligm: to

perform it: how to analyse the problem, how to define the involved

knowledge- field, how to identify the possible strategies.. At the

opposite the algorithm defining how to process with binomial
equations has a very limited validity field. Henceforward, when

speaking of methods, we will exclude pure algorithms and consider

methods as presenting two main purposes: helping an user in the
approach of a problem and in the organisation of the process leading

to a solution (including control of solution validity and/or
optimization) (2). As a class of problems may be embedded in a
broader class, there exist embedded levels for methods, increasing

the field of validity, and decreasing specifications about how to
apply the method. On the other side, a given method may define
sub -problemS, for which it can precise methods of 'lower' level

(Rogalski U., 1987).

nethode for_ oratlen-lolrinq in teachimiJUKUMMIDORI202218

One can constrast methods in problem-solving according to the

following poles: methods which are strongly linked to conceptual

invariants, and methods which are mainly devoted to organize, manage

and control the use of soon acquired knowledge. An example of the
first pole is given by programming methods for the construction of

loops invariants in writing iterative programs. At the second pole

one can find the methods implicit in heuristics management in expert

systems. An example will be detailed below, which can be seen as an
elicitation of expert's knowledge in the study of numerical
sequences.

It appears a plausible hypothesis that methods play different
roles in the teaching and learning process depending on their

position by respect to these poles. As an example, we will now
present 'a priori analysis' of two methods, designed for scientific
advanced level students. The first one deals with geometrical

problem-solving; the second one with convergence of numerical real
sequences.

The purpose in elaborating a method for complex geometrical

problem solving was to teach them to students, so that they became

203



- 531 -

able to conceive solutions to problens of the relatively large field

covered by the curriculum in the scientific classes at the end of the-

secondary school (17-18 years old students). Requirements in writing
proofs were out of this actual aim (Robert and al.). Schematically

the method is organized in three parts: 1) a rough classification of

types of geometrical problems (6 or 7 types), 2) a list of tools
(such as:' cartesian coordinates, transformations as symmetries,

translations, rotations.., use of scalar product, barycenters..) with

a specification of the setting in which they can be used (affine,

vector or. euclidian space, nuaerical setting..) and 3) a list of
pasic configuratima (they are relatively simple configurations which

appear very frequently in more cooler figures, and whose properties

are well known). This aethod was taught to students from the very
beginning of the curse, according to the following scenario: Before
any problem-solving situation, the teacher presented some of the
above elements of the method. A completion of the initial state of
the classification and the lists of tools and configurations was
engaged by the students/depending of their activities in geometrical

problem-solving. A great part of these activities was devoted to

research in small groups (3 or 4 students) an problens requiring the
use of the aethod: problems were given without any indications,
several ways were possible to find a solution. The teacher intervened

both on geometrical content and on aethods. What was expected from
the students was the following: asking questions about the type of
problems, asking suggestions about possible adapted tools, trying
strategies and changing points of view, frameworks or strategies if

unsuccessful. At the end of the work, the teacher presented a point

on the various specific strategies uses in the different groups,. and

the geometrical concepts underlying the solution to the problem.

Writing a method for the study of numerical real sequences vas
done in a quite different perspective (Rogaiski N., 1987). The aethod

vas not directly taught to students (in the teaching process) but was
proposed to thea after the curse (Students are scientific students,
in the first year of the university). The purpose was to express a
general, complete method for studying convergence fOr sequences
frequently encountered in mathematics at this universitary level. The

method was organized with szrategiei (aor2frl aethods for reaching
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sub-goals): 1) classification strategy 2) stralegyLgrrfifiarEka

hypotheses (as: existence, possible value of the limit..), 3) proof

=gm. Some of these strategies involve tactics (classify the

problem, define priorities, simplify, modify for simplication,

classify the sequence..); tactics themselves use technics (graphical

representation, numerical tests,..). Moreover a process was expressed

for control, correction, "recovery" for dealing with unsuccessful

strategies. At last, three types of required knowledge were

presented, which have to be always available by students (consisting

of 'main theorems, classical results and °standard° numerical

functions). Two technics are joined as general useful tools: °using

inequalities° and °reasoning by induction". This presentation was

based upon students' previous .knowledge and centered on the

organization of the process of problem-solving. It clearly

exemplifies a method as a tool in managing soon acquired "local'

knowledge (about specific sequences, typical problems such as

convergence of sequences defined by induction..).

Some hypotheses and results about cognitive acquisition and

didactical processes

Our hypotheses about the productive role of learning methods are

based upon three types of considerations. First a constructivist

conception of knowledge acquisition leads to the fundamental

assumption that °problem solving is source and criterion of

knowledge° (Vergnaud, 1982). Then, learning methods for problem

solving should be strongly linked to knowledge development. Secondly,

epistemological as empirical studies show that metacognition is an

intrinsic part in the whole process of knowledge acquisition

(Schoenfeld, 1986, 1987). Thirdly, studies in work psychology have

shown strong evidence that goal setting (that is specifying goals to

be reached in performing a task) has positive effect on the

performance. (Locke, Shaw, Saari, Lathan, 1981). Now, methods

organize research activity in problem-solving both by setting

specific goals and relating sub -goals and tools, therefore they must

lead to besser perfortance.

We can'specify briefly two hypotheses about the process by which

learning. and using methods may improve knowledge acquisition. These

1,1(11-
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hypotheses are based upon two theoretical concepts. First we defined

the notion of "precursor': precursors for a new conceptual field are

notions, operations and/or representations in a near field that can

make new problems and notions meaningful. Second we defined twp

states for student's knowledge: available and liberable. An avalaible

knowledge can be used without any explicit cue in the problem, and

without reference to this knowledge; at the opposite, a liberable

knowledge requires an explicit call to this knowledge: specific goal

directing attention to it, or specific cue in the text of the problem

(such as are indications on the way by which solving a problem). Our

hypothesis is that for most of the students existence of precursors

is a strong requirement in acquiring new knowledge, and that

knowledge has to become available in order to be really efficient in

problem-solving (3).

Two hypotheses about teaching and learning methods are related

to these concepts of precursors and states of knowledge: a) learning

a method in a given conceptual field is more efficient (or even

perhaps only possible) if there exist precursors for the involved

conceptual notions and if some knowledge ie present in "liberable"

state; b) learning and using a method in problem-solving is a mean

for a change in knowledge state, from "liberable" to °available",

because of two facts. calling out knowledge:.'elicitation of goals and

explicit proposals of tools. working in small groups may stress this

productive role played by the elicitation processes.

A twofolds question arises at this point: what. are the

conditions for students' acquisition of methods? what are the

conditions for teaching methods? The acquisition may follow an

explicit presentation by the teacher (as in our first -preceeding

example on geometry) or it may proceed from elicitating

students'strategies in problem-solving; the teacher expressing the

invariants defining the method. The empirical results in

professionnal acitivities as in teaching lead not to retain the

hypothesis that students can cosntruct themselves the invariants in

eficient problem-solving: it concerns probably a small part of

students, and it semms to us necessary. to research pedagogical

strategies for the others.

Depending on our predeeding psychological analysis we assume
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that 1) the possibility for students for acquiring a taught method

depends on the content and on the actual state of knowledge by

students; 2) didactical intervention is more efficient if methods are

presented during problem - solving sessions, where students work in

small groups and when the problems are 'open" (no intermediate

indications, and several ways for solution). The analysis of students

working in small groups confirms the place devoted to elicitation,

and its evolution along the successive .sessions (Harilier, Robert,

Itmaud, 1987).

Conclusion

Theoretical analysis, results in the field of cognitive

psychology and data observed in didactical experiments converge to

the conclusion 1)that one can design methods related to a specific

conceptual field; 2)that such methods can be taught to students, as

soon as they have some available knowledge and the ability to

explicit aetacognitive activities in a precise way, and to take then

as objet for thought, and 3)that students benefit from such a

teaching. Didactical situations which appear as good "candidates" for

supporting such a methodological teaching involve: work in small

groups, open and sufficiently complex problems and a, didactical

environment giving a large place to students' metacognitive

activities such as discussion about knowledge and heuristics, and

elicitation of aetacogntive representations on mathematics,

problem-solving, on learning and teaching maths (4). Two open

questions concern to what extend such conclusions may be valid for

teaching younger. and less advanced level students, and what are the

good ways for evaluating such a teaching and learning process?

atm
(1) We don't try to be exhaustive, but to give some representative
examples of different types of research in the field of aetacognition
in problem-solving (The first one devoted to mathematical
problea-solving being Polya (Polya, 1962-64).
(2) The field of programming presents quite a wide range of

°programing methods' one can analyse as methods for problem - solving
(Ragalski, Samurpay, Hoc, 1987).
(3) From our theoretical point of view, these notions of precursors
and liberable knowledge are related to Vygotski.s concept of

"proximal zone of development'.
(4) The 'beliefs' in Steilfld's classification (Schoenfeld, 1987).
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STUDENT-SENSITIVE TEACHING AT. THE TERTIARY LEVEL: A CASE STUDY1
Pat Rogers,

York University

Abstract

Perceptions college students have of mathematics as a
difficult and almost impossible subject can operate as a
barrier preventing them from developing their full potential.
This paper is about one department's success in changing those
perceptions and creating a learning environment in which
concern for the students development overrides any concern
about covering the curriculum. This approach succeeds in
motivating students and encouraging them to high achievement
in advanced level mathematics, at the same time fostering high
self-esteem and confidence in their mathematical abilities, the
ability to work independently and skill at proving theorems and
reading mathematics. This study is the beginning of an attempt
to describe conditions which favour the learning of more
advaricedand abstract concepts in mathematics.

"Proper curriculum is the heart of a mathematical sciences program,
but there are many non - academic aspects that also must. be considered."
(CUPM, 1981) While this idea is a cliché at the elementary and secondary
level, it has still had little impact at the post-secondary level. What
research has been done into effective learning environments at the tertiary
level has focussed on students who have previously :lad difficulty with
mathematics (see for example Lochhead, 1983), rather than on

mathematically able students. This paper .is about one undergraduate
department's success In balancing their concern for curriculum with a
concern for developing each student to her fullest potential. In my study of
this department I am attempting to describe conditions which favour the
learning entre complicated and abstract concepts in mathematics.

In a 1981 report, the. Committee on the Undergraduate Program in"
Mathematics (CUPM) of the Mathematical Associatlori of America (MAA)
Cites examples of programs it has found to be successful in "attracting a

1This project is supported by a grant from the Social Sciences and
Humanities Retearch Council of Canada under the Women and Work Thematic
Program.
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large number of students into a program that develops rigorous
mathematical thinking and also offers a spectrum of (well taught) courses
in pure and applied mathematics:" The State University of New York (SUNY)
at Potsdam College is one of those mentioned. According to an MAA survey
(Albers at al., 1987) for the period 1980-85, while overall undergraduate
enrolments in the United States. remained relatively stable, there was an
increase in the number of undergraduate mathematics degrees of. 45%; the
corresponding figure for Potsdam was 152%. Last year, just under one
quarter of Potsdam's graduates had a major .In mathematics and, of those
who graduated with an overall average of at least 3.5 on a4 point scale,
over 40% were mathematics. majors.

At most post-secondary institutions, complaints about the difficulty
of attracting 'good' students, the low quality and inadequate preparation of
the students they do have, and their inability to write a rigorous
mathematical proof are common-place. People who make such complaints
usually expect and find high drop-out rates in introductory courses.and large
.numbers of students doing poorly on tests. One frequently also encounters
the attitude amongst faculty that if too many students are successful in a
course, then it cannot have been challenging enough. The main message of
the CUPM Report is that rather than spend time complaining about students
there is much to learn from the few departments cited where students are
successful and quality and standards are maintained.

According to Poland (1987) the basis for the success of the Potsdam
mathematics programme is that they "instill self-confidence and a sense of
achievement through the creation of an open, caring environment." Students
he talked to said they felt the faculty cared for each one of them and he
observed that this was reflected in a high degree of confidence in their own
mathematical ability. "The faculty win the students over to enjoy and do
mathematics. it is simply the transforming power of love, love through
encouragement, caring and the fostering of a supportive environment."

In October 1987, I began a study of the programme at Potsdam in
order to identify and describe the programme's determining characteristics
and to answer a number of questions raised by the Poland paper:

1. What precisely is the nature of the caring attitude the faculty.
at Potsdam display towards their students?'

2. What specific teaching behaviours arise from this attitude
towards students? (In his paper, Poland discounts teaching techniques as an
explanation of their success.)
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3. What are the specific aspects of their approach which are
especially successful with their female students? (60.4% of the
mathematics degrees awarded in 1983 went to women compared with 43.8%
nationally. Degrees awarded to women in that:year,at Pottklarn comprised
55% of the total number of degrew, warded compared wier'' 51% nationally.)

4. What do the students think about the programme?

In this paper I shall confine my comments to summarising findings
which relate to the first of these questions.

METHOD

This is an exploratory study using qualitative techniques to gather
and analyze a variety of data. At the time of writing the first (data-
gathering) stage of the investigation is complete and I have begun coding
and analysing the data.

The data includes: all departmental printed material which is
distributed to students; statistics relating to undergraduate enrolments,
high school averages, and SAT scores for the last ten years; taped
interviews with 40 students currently in the programme and with Dr
Clarence Stephens, Chairperson of the department at Potsdam for eighteen
years until his retirement last year. In additionpl have made extensive field
notes of my observations including interviews with faculty members,
counselling and admissions personnel; office consultations between faculty
and students; and classroom sessions of almost all faculty members.

My final report will be presented to the faculty and students to check
whether my findings match the experience of the participants. While most
of what IS reported here has been validated by one or two key Informants,
nevertheless, since this is a report of work in progress, the conclusions 'I
have reached are tentative at this stage.

THE PARTICIPANTS

Potsdam College is a small undergraduate institution serving about
4000 students and is situated in the north east corner of New York State
close to the Canadian/US border, a rural area known as the North Country.
From its early beginnings in 1816 the college has been involved primarily in
teacher education until It became the State University College of Arts and
Science at Potsdam in 1962.

The mathematics department comprises 15 faculty members only
one of whom is female and five of whom have joined the department within
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the last five years; all but one faculty member has a doctoral degree In
mathematics. The teaching load varies between 9 and 11 hours each
semester but in addition faculty may have one or more students doing
independent study.

According to admissions personnel, the college draws from a wide
area of New York State, attracting students primarily from lower middle
class backgrounds, often from farming communities and small villages.
Students are invariably the first in their family to attend college and with
no tradition of post-secondary education to support them, poor self-concept
and low self-esteem is often a problem.

MAJOR THEMES IN THE DATA AND DISCUSSION

The most striking feature of the programme at Potsdam is the
learning environment. This has .been created by establishing a balance
between what the former chairperson would call 'a proper, rather than an
excessive, concern for the curriculum and the standards of the depa-rtment
(Poland, 1987) and a concern for the development of their students. The
faculty are highly sensitive to students believing that, "while the subject
matter is important, the student is more so."

The predominant characteristic of this environment is its culture of
success. Students at Potsdam are more concerned about whether they will
do well enough to achieve high honours in a course rather than whether they
will fail it. They expect to do well and they do. The faculty believe that it
is their "job to teach the students they have, not the students they wish
they had." Instead of complaining about the poor quality of their students,
they work with the students at their level of understanding and develop
them to their full potential. There is a strong belief in the students' ability
to master difficult ideas in mathematics and this is communicated to the
students who in turn come to believe in themselves.

What Is the source of this belief in students? I think It owes its
genesis to the experiences of the former chairperson, Dr. Stephens, when he
taught in a black southern college and learned that "the perception students
have about mathematics as an almost impossible subject has to be changed
in order to teach them mathematics." Knowing this when he came to
Potsdam, Stephens made it his primary focus to set about changing students'
perceptions about the difficulty of higher level work in mathematics and
whether they were capable of doing it.

A key strategy in Stephens' approach was to create role models. He
did this by identifying students in their first year at the college who had
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demonstrated high promise in their course -work, and challenging them to do
advanced level work in mathematics. At that time the department had no
graduate programme and so he was faced with a dilemma: how could he
motivate these students to "go very deeply into something when .if they
played around, after four years and they did less work" they would.sti II get
the same degree? For this reason, the department created the BA/MA double
degree whereby students could get their undergraduate and graduate degrees
concurrently in four years. This is an extremely demanding programme and
over the years, less than 4% of their mathematics majors have graduated
with the BA/MA degree, but its role In challenging the brighter students and
providing examples to encourage and motivate ill-prepared students has
been invaluable.

The spirit in which these role models have been used Is also
Important. They are not held up as examples of excellence, as a means of
rewarding the high achievers. Rather they are presented as examples of
what can be achieved by any student who is prepared to put in the time and
effort. The message received is: "Look at what these students have done.
They're just like you. You can do it too." It is interesting to note that many
of these early role models were women, one possible reason for the
department's success in attracting female students.

Another way in which perceptions about the difficulty of upper level,
courses in mathematics are created is the tendency many departments have
to give lower level courses to untenured faculty, part-time faculty,
graduate students 'or faculty with no doctoral qualifications, and to reserve
the upper level, 'more interesting courses', for senior faculty. Such a
practice can convey to students the hidden message that upper 'level courses
are so difficult that only the best, or the most experienced, or the few can
teach them... Well may the student wonder whether, by implication, only the
very brighteSt will be able to pass it. In a department which is sensitive to
the perceptions of students, this is avoided by ensuring that all faculty
teach across the curriculum: At Potsdam no one complains about teaching
lower level courses because everyone gets the opportunity to teach upper
level courses.

It has been interesting for me to observe how many of the attitudes
towards students prevalent amongst the faculty at Potsdam are those
attitudes considered, by proponents of effective parenting (see, for
example, Dinkmeyer and McKay, 1976), to be crucial in building a child's
self-confidence. The importance given by members of this department to
building their students' confidence and self-esteem is central.
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Encouragement Is an essential skill for building a students'
confidence and self- esteem and the ways in which the faculty at Potsdam
encourage their students are many and complex. One of these ways has
already been discussed above: the deliberate creation of a rich tradition of
role models and stories which place the student in a climate of success.
Another way to encourage students Is by recognising their efforts and
accomplishments in much the same way that sports fans spur on their
favourite team. Perhaps the most impressive way the Potsdam department
does this is through their annual newsletter. Last year the newsletter was
distributed to almost 2000 former students, high schools and graduates. in
it were printed details of the new Clarence F. Stephens Mathematics Scholar
award, the department's Way of thanking and honouring its chairperson on
his retirement. The award is to be given annually to "the non-graduating
mathematics major who, by his or her achievement in mathematics, best
personifies C. F.' Stephens' vision of the mathematics student who is
becoming all he/she is capable of being." The message is clear. You don't
have to be She best, but you should strive to be' your best. Competition Is
encouraged, but the competition Is with oneself and the effort is recognised
as well as the achievement.

Students are also encouraged by being challenged, but the challenges
should be realistic. Instead of watering down the content and lowering
standards as so often happens when faculty are concerned about giving their
students success, the faculty at Potsdam believe that confidence comes
from grappling with difficult ideas and concepts and being-successful. And
they are quite explicit about it, as one teacher told his students on the first
day of class, "Frustration is a natural part of our game.. My job is to keep
you at the edge where you're frustrated enough to keep working but not too
frustrated to quit." And they are prepared to provide the resources in terms-
of time and encouragement to support their students' efforts.

Other encouraging behaviours which I have observed are closely linked
to their approach to teaching mathematics: This will be the subject of
another paper so I will give only a brief sketch here. First and foremost the
aim Is to teach the student to think mathematically, to write a rigorous
mathematical proof and to read a mathematics textbook. It Is Important not
to race through the course-in an attempt to cover a set syllabus a student
who has learned how to learn can cover the remaining course content by
herself. Consequently, very few teachers at Potsdam adopt the traditional'
lecture format of teaching. Indeed some are quite vehement in their
opposition to the method: "Suppose a person has a pile of sticks and they
want to start a fire. They find two nice. dry stones and they begin to rub

REST COPY AVAILABLE



542 -

them together. Then I walk in and pour a bucket of water over them. That's
what a lecture Is Ilker

Instead a wide variety of teaching techniques are used which are
relatively uncommon at this level of the educational system. Metaphors for
describing this approach to teaching abound in the department but there Is a
common theme in all of them which agrees with what I have also observed
in the classroom. There is the acknowledgement that becoming a
mathematician, like becoming an athlete, takes time, practice and lots of
encouragement and support. The teacher at Potsdam is a coach.

To summarize, some of the techniques I' have observed are: active
student participation and group work in class and outside of class; 'coming
to the blackboard'; learning by helping others informally and more formally
in the student run Math Lab; observing seatwork; an approach to grading
tests and homework that construes them as articles of learning rather than
measures of ability; a flexible grading scheme which allows for the student
who blossoms late in the course; explicit teaching in how to read a
mathematics text with understanding; and most importantly constructivist
approaches to developing the subject matter.

CONCLUSION

The learning environment at Potsdam has been created by challenging
perceptions students have about the difficult nature of mathematics which
inhibit their ability to succeed at it. In creating this environment, faculty
have been motivated by a concern or caring for students which is directed
towards helping them become the best they are, capable of being: The

faculty believe that developing a student requires time, encouragement and
challenge and that the best way to do this, as Stephens would say, is to 'go
fast slowly'. In other words teachers who are sensitive to the needs and
level of understanding of their students will sequence instruction at a pace
at which students can learn. This is the essence of a student-sensitive
approach to teaching because concern for the individual student's
development overrides any concerns about covering the curriculum.

One consequence of this student-sensitive approach is that, as news
about the department's success with students has reached the high schools,
they now attract better prepared students. Presently one of the most
selective of the SUNY colleges, Potsdam attributes part of its success in
attracting good students to the excellence of the' mathematics department.
Over one quarter of the incoming freshmen at Potsdam were in the top ten of
their high school classes and the college's freshmen score' the highest
mathematics SAT scores in the whole SUNY system.

15
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Given the large numbers of majors they teach and the nature of their
approach to teaching mathematics, It is natural to ask what compromises in
curriculum have been made. No compromise in standards has been made, In
fact the opposite is true. But certain economies have been made In order to
keep class size down to the level (40) the department insists upon. The
mathematics major is a minimal degree requiring 30 credit hours (10 one-
semester courses) in a very traditional, pure mathematics sequence with a
limited range of options.

The experience of graduates of the program who have gone on to
jobs with companies like IBM, Kodak, and Hewlett-Packard suggests that
students leave Potsdam with excellent work skills: the ability to think
independently, read and write technical reports, work cooperatively with
other people, present and defend their work, and also offer criticism to
others without annihilating them. Students who have gone on to graduate
school, at places like Cornell, Illinois, Michigan and Wisconsin, report that
while their mathematical preparation may not be as broad perhaps as other
students, their learning skills enable them to bridge any gaps for
themselves and that they are well prepared for independent work at the
graduate level.

Graduates of Potsdam College are very loyal to the mathematics
department. Many of them* have mentoring relationships with a faculty
member and keep in touch for years after they leave. Some return to speak
at IIME (their honorary mathematics society) functions, providing role
models for current students and living proof of the value of a pure
mathematics education that taught them more than a collection
mathematical facts.
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STRATEGY CHOICE IN SOLVING ADDITIONS: MEMORY OR
UNDERSTANDING OF NUMERICAL RELATIONS ? *.

Analdcia Dias Schliemann
Universidade Federal de Pernambuco, Recife, Brasil

,Siegler's strategy choice model was tested for
additions of two addends ranging from 1 to 29,
on a sample of 20 Brazilian street vendors, very
skilled in mental computation. The model proved
to be adequate for addends no larger than 10.
For larger addends, properties of the decimal
'system, more than memorization, seems to better
.predict the strategy used.

Data on everyday mathematiCs (Carraher, Carraher 8

SChliemann,.1985, 1987) have.shown when.computingthe

results of arithmetical 'operations, most of the time

children use oral.procedures. One of the most common of

these procedures is the decomposition strategy. When using

decoMposition to cSlculate, for example, the result of 95 +

57, one might add 90 (from the first addend) alid 50 (from

the second), obtaining 140, which is than added to 12, the

result of 7 + 5; yielding 152. Such a strategy,..as already

demonstrated by Carraher. 8 'Schliemann, A1988, in press)

reveals a clear understanding of the decimal system and of

the propertiesof the additive composition of numbers.

How theSe strategies develop and how they relate to

memorization of addition facts is still unknown.

Experiments by Siegler & Robinson (1982) and by Siegler

Schrager (1985) analyied the strategies used' 'by 4- and 5-

year -olds to solve additions of two addends with values froM

1 to 5 or from 1 to 11, with sums no larger than 12.

Siegler (1986) proposed that the choice of a strategy among .

others would be determined by the strength of the

associations between the pairs of numbers to be added. This

association was determined in a.separate experiment` where 4-

*This research was supported by a'grant from CNPq, Brazil.
I am.indebted to R. Siegler, for discussions that originate
the stud9,- to D.Carraher for his comments on a first version
of thi&paper and lay, Carlos, Emildo, Ivo, Leila,
Patricia and Solan 4fof 'data collection and analysis.
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and 5-year-olds were asked to say what they thought were the

right answer for the addition of each pair of numbers,

without putting up fingers or counting. The amount of

correct and incorrect answers thus obtained 'or each pair of

numbers was used to determine the strength of the

associations between these numbers. This distribution of

associations model, tested in different types of tasks,

proved to be adequate to predict the strategies used in

those simple additions. The strategies found ranged from

overt behavior strategies (finger counting, finger display

with no apparent counting, verbal counting) to memory

retrieval where no overt behavior was observed. Solution

times, degree of overt behavior displayed and eficiency in

solving the additions, were all highly correlated (around

.90) with the degree of association found between the pairs

of numbers involved in the additions.

What would happen, however, with additions involving

. larger numbers., allowing use of other more soffisticated

procedures.such'as decomposition strategies? Would the same

Strategy choice model apply? Siegler (1986) proposes that

his model would hold, for additions, subtractions and

multiplications. However, Hope 8 Sherrill (1987), in their

study on the characteristics of skilled and unskilled mental

calculators have shown that performance on mental

multiplication of large' numbers had a low positive

correlation with general multiplication fact recall.

It has been shown that oral addition of numbers

frequently involve -decomposition strategtes. 'These

strategies could either be determined by the addition facts

recalled by the subject or by a general understanding of I:he

decimal system. In the first case, as predicted by

Siegler's model, the decomposition strategy should be used

for numbers not recalled by the subject and the kind of

decomposition used should. be related to the addition facts

they know. If,. however, understanding of the relations

involved in the decimal sy6tem is a more prominent factor

than memorization of addition facts, even for pairs

memorized by a subject, decomposition strategies. would often
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be used and the 'way numbers are decomposed would not be

related-to the memorized addition facts but moat often to

the decimal system properties..

This study aims to find out the relative importance of

memorization versus understanding of the decimal system in

the choice of different strategies for solving additions.

METHOD

Subjects: Twenty 9- to 13- year -old Brazilian children,

who worked as street vendors participated in the study.

Their 'school experience was irregular and they attended, or

had attended, at most, the 3rd grade. At work, when selling

candies, lollipops, ice-cream, fruits or sandwichs, they

were used to mentally compute the results of additions,

subtractions and multiplications.

Material and Procedure: Subjects were asked to orally

solve a series of 216 two-addend additions. In the first

phase of the study they were instructed to answer each of

the 216 pafrs of numbers to be added, as quickly as possible

and, when two seconds were elapsed, if no answer was given,

another pair was presented. In the second phase they were

asked to orally solve, in a different order, the Aame 216

problems, using whatever methods they want and explaining

how they reached each result. Of the 216 additions, 45

involved the addition of two numbers from 2 to 10 with the

larger addend preceding the smaller one; 171 involved the

addition of a number between 21 and 29 with another in the

interval of 2 to 20. These 216 additions could be

classified according to the numbers involved, into five

groups, as shown in Table 1.

Table 1
Classification of the 216 additions presented to the

subjects in the first and the second phases

Problem type Values of Addends of
First Addend Second Addend Problems-

Group.1 I. to 9 A
.

to 9 36
Group '2 10 1.to 10 9

Group 3 21 to 29 1.to 9 72
Group 4 21 to 29 10 or 20 18
Group 5 21 to 29 11 to 19 81

2 9
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RESULTS

The percentage of memorized pairs, for each type of

addition--That.is, those correctly answered in less than two

seconds--is shown in Table 2. Memorization was at its

highest for group 1 problems (10 plus a number from 1 to 10)

where 86.1% of problems were solved. Group 1 (1 to 9 plus 1

to 9) and 'group 4 (21 to 29 plus 10.or 20) followed, with

59.6% and 46.7% of correct answers, respectively. The most

difficult additions.were those in groups 3 (21 to 29 plus 1

to 9) and 5 (21 to 29 plus 11 to 19) which were solved in

only 31.9% and 9.0% of the cases, respectively.

Performance in the second phase was nearly errorless:

only 22 errors were found among the total of 4320 problems

presented to the 20 subjects. The prefered strategy to

solve type 1 and type 2 additions was memory retrieval.

For types 3, 4 and 5, decomposition was the strategy. most

oftenly used. Counting strategies appeared in a few

problems, either in isolation or combined with

decomposition.. This general analysis seems to show that the

data obtained support Siegler's model: for the additions

solved in the first phase, more memory retrieval was found

in the second; for those not solved, other strategies were

chosen. However, if a more specific analysis is performed a

different picture may appear. .

Table 2
Percentage of problems solved in the first phase and

percentage of problems solved through memory retrieval,
decompositiOn and counting strategies in the second 'phase.

Problem
Type N

Solved in
1st phase

Strategy
Mem. Dec.

in 2nd phase
Coun. Mix.

Group 1 36 59.6 64,6 20.7 14.2 .4
Group 2 9 86.1 92.7 2.8 4.5 .0
'JGroup 3 72 31.9 23.5 56.8 17.2 . 2.4
Group 4 18 46.7 38.7. 52,9 7.5 '.9
Group 5 81 9.0 6.9 74.7 10.2. 8.2

Table 3 shows, for problems that were solved in the

first phase, the percentage of those where the answer in the

second phase was given through each one of the strategies.
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The 'same data are also shown for problems not solved in the

first phase. Siegler's model leads to the prediction that,

for pairs of numbers with a strong association--in this

study those solved in the first phase--memory retrieval

should be the chosen strategy in the second phase. For

those pairs not solved in the first phase, other strategies

such as decomposition or counting would be chosen more

frequently in the second phase. Inspection of Table 3

reveals that this prediction applies only to type'- 1.

problems. For these, as predicted' by the model, use of

memory retrieval was much more common for the problems

sokied in the first phase than for the unsolved ones. iype

2 problems show a very high percentage of use of memory

retrieval for solved problems, but this also happens for the

ones left unsolved. For types 3, 4, and 5, regardless of

the results in the first'phase, there was a clear preference

for strategies other than memory retrieval, mainly the

decomposition strategy..

Table 3
Mean and:percentage of-solved (S) and unsolved (U) problems

in the first phase-and percentage of_use of memory
retrieval, decomposition, counting, and mixed strategies in

the second phese,- for corresponding problems.

Problem 'st phase Strategies in 2nd phase
type Mean Mem. Dec. Coun. Mix.

Group 11 36 S 21.4 59.6 . 78.8
U 14.0 38.9 42.8

Group 2 9 S 7.7 86.1 95.5
U 1.2 13.3 75.0

Group 3 72 S 23.0 31.9 26.2
U 48.7 .67.6 22.3

Group 4 18 S 8.4 46.7 33.3
U 8.9 49.4 43.8

Group 5 81 S 7.3 9.0 13.0
U 73.5 90.7 6:3

14.0 7.2 0
31.1 25.0 1.1
2.0 2.5 0
8.3 16.7 0

69.4 4.4 .6
51.3 23.2 3.3
57.7 8.3 .6
48.3 6.7 1.1
83.6 3.4 0
73.8 10.9 9.0

'rots] mosso* end parcentweare In.the gIrst whmee dI.Pier groin
total number Of problem= be/sun-Ise P. ow problems were not
promented In the .ttret' obese.

The model also leads-to the prediction that.the' number

of problems solved in the first phase should be highly

correlated with the number of these same- problems solved.

through decomposition 9rDtte second phase. Also, the number
.144
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of unsolved problems should be highly correlated with the

number of these same problems solved through strategies

other than memory retrieval. Table 4 shows, for each

addition type, the correlation coefficients obtained for this

analysis. For types 1 and 2 problems, the simpler ones,

involving addends no larger than 10, use of memory retrieval

was in fact highly correlated with number of solved problems

in the first phase. However, this correlation was also very

high and significant for the unsolved problems. For types

3, 4, and 5, problems with at least one addend larger than

20, the correlations go clearly agai.nst the model: use of

decomposition was always highly correlated with number of

solved but not with number of unsolved problems. Only

counting strategies, for all problem types, shows

significant. although'not very high correlations with number

of unsolved problems, as predicted by the model.

Table 4
Kendall's tau correlation coefficients for number of solved
(S) and unsolved problems (U) in the first phase with number
of these problems solved through each strategy in the second

Problem First phase Strategy in second-phase
type N Mean S and U Mem. Dec. Coun. Mix.

Group.1 36

Group 2 9

Group 3 72

Group 4 18

Group 5 81

S 21.4 .60""" .25 -.10
U 14.0 .57""" .27 .39"" .10
S 7.7 .73""" -.03 .08
U 1.2 .79""" .15 .19" -
S 23.0 .16 .75""" -0.3 .02
U 48.7 .44"" .04 .27" .01
S 8.4 .23 .49"" -.19 .00
U 8.9 .23 .20 .25" .34"
S 7.3 .29" .74""" .09
U 73.5 .08 .14 .24" .18

000 < 0.0 p < .010 < .0M.

For types 3, 4, . and 5 problems the decomposition
strategy consisted in most of the cases in separating, for
each addend, the tens from the units. The tens and the
units are then added together separately and the two results
added at the end of the procedure. Variations within this
general approach were related to the order the units to be
added were mentioned (nearly always the larger one was
mentioned first), and the order the tens and units. were
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taken (there was a general tendency to add the tens first).

When the sum of the units was larger than 10, and was

obtained before the sum of the tens, a second step in the

procedure could appear which consisted in decomposing the

result of the sum of the units into ten plus units, add the

ten to the original tens, joining the units that were left

at the end.

For problem types 1, 3, and 5, another kind of

decomposition, used with different frequencies by 19 of the

20 subjects, appeared in a total of 746 problems. This

consisted in adding, to one of the addends or to its units,

part of the units of the other addend so that 10, 5, or a

multiple of 10 or 5 was obtained. In types 3 and 5, when 10

or 5 was, obtained, it was joined to the original tens, if

there were any,'and the part of the units was aggregate at

the end to the round number obtained (multiple of 10) or to

the multiple of 5, if' this was the case. In most of the

cases where 10 or a multiple of 10 was searched, the units

of one of the addends were of value 8 or 9. Examples of

this strategy are the following answers:

9 + 3? "12, I added 1 to 9, there was 2 left: I

added 2 to 10."

28 + 19?"28 plus 19, let me see (pause) 28 plus 19
(pause) 40 (pause) 47. This one I took 10
from 19 and put it on 28. Then I took 2
from 9, and 1-had 40.' There was 7 left, it

makes 47." \

Among the problems \solved through this sort of

?composition, more than one third inVplved the additions of
\

I0 units that were solved in the fii-st\ phase (in\type 1
N

oblems). Correlation coeficiehts for number of type 1

ditions solved in the first phase.with use of this second'

rt of decomposition strategy, in each problem type tended

be negative but were all very low and non-significant.

CONCLUSIONS

The choice of strategies to solve addition problems,

. although influenced by memorization' of addition facts, seems

to be also strongly determined by the understanding of the

characteristics of the decimal system, by the situation9 Q
#(.4.
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where the problems are solved, and by the kind of numbers to

be added. Thus, Siegler's strategy choice model, although

adequate to explain the choice of simpler strategies to

solve addition of small numbers by young children, who often

rely on counting strategies, does not seem to fit the case

of more complicate additions solved by skilled mental

calculators, who use different sorts of decomposition

strategies. Of course one can always argue that the

decomposition strategies themselves are determined by the

stronger association that exists for 10 and multiples of 10

with numbers .smaller than 10. But this association only

holds if an understanding of the decimal. system as a

generative system\ pre-exists. For numbers larger than 10,

when the child understands the relations involved in the

system, the role of memory skills is reduced." Understanding

the decimal system allows the child to find out, whenever

needed, the results of additions, making school training or

memorization of addition facts irrelevant.
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REPRESENTATIONS OF FUNCTIONS AND ANALOGIES

Baruch Schwarz & Maxim Bruckheimer

Weizmann Institute of Science, Israel

A major difficulty in the learning of functions is the transfer of
knowledge and methods between representations. The computerized
environment T.R.M. was created to alleviate this difficulty. A
series of studies on learning processes with T.R.M. was undertaken.
This paper reports on an investigation of students' use of.
analogies in transferring knowledge between representations.

REPRESENTATIONS AND ANALOGIES

Although the concept of function and its subconcepts are not

theoretically linked to a particular representation, the curriculum of

necessity translates these concepts into several representations. she

preimage-image link, for example,may be represented algebraically in the

form yo.f(x0)',' graphically by a point, or by a pair of data'in a table.

Similarly, other notions have to: be based on one or more representations.

Typically, three or four representations are used in the initial study of

functions. The'passsge between.these representations is difficult (see

e.g:MarkoVits at al., 1986). The properties of a function are often

understood in their representational context only and no abstraction of

these properties is made by beginning students (nor, often, by more

advanced ones).

Such a tendency to compartmentalize knowledge has been noticed in

several domains. Schoenfeld (1986), in geometry, showed how students who

acquired knowledge, in one context kept it separate from knowledge

acquired in other contexts: Kaput (1982) obtained similar results in

algebra. Green '(1983), on the other hand, indicated how analogies can

facilitate the construction of relationships between units of knowledge:

"If the domains are represented by entities that have relations that
are similar, the analogy may be found easily, but if the
representation of either domain lacks these entities, the analogy may
be impossible _to find. Consequently, an analogy can be used .in
facilitating the acquisition. of .representational knowledge in a
domain." (p.228)

The representational domains of a.function are composed of quite

different objects.and the methods which are used in each representation

are qUite different from each other. For, example, the aoluticin of .an

equation of the form i(x)=a can be obtained by algebraic methods
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(extracting roots, simplitications ...) or by constructing and reading

the graph of the function. The heed to establish these representational

domains and the relationships between them led us to construct a

computerized environment, the Triple Representational Model (T.R.M.),

whose principal characteristics are:

T.R.M. facilitates transfer of function concepts between .three

representations: algebraic, graphical and tabular. The technical

tasks are executed automatically; the student has to organize and to

relate results linked with one representation in order to use them

in others.

* Work within each representation is operational, i.e organized in

terms of operations that the student has to carry out.

* T.R.M. is the computerized core of a complete Grpde 9 function

curriculum based on problem solving and .exposes the student to a

great variety of functions.

* The construction of T.R.M. is intended to provide a good ontology of

domains which facilitates analogies between representations.

Therefore, operations available in the ,three representations were

chosen to be conceptual entities whose utilization is similar.

'Their detailed description will be given in the following.

BRIEF DESCRIPTION OF T.R.M.

- .

Three typical operations will be described tO.convey'the character of

T.R.M.: "Search" (algebraic), "Compute" (algebraic) and "Draw"

(graphical).

"Search" enables the user to solve (in)equalities involving the function

f(x) under consideration. The structure of this operation is shown in

Fig,l. Using this operation the student can-search, for example', for

the zeros of a function', for the subdomains in which thefunction is

increasing (see Fig.2), solve inequalities (e.g replace f(x+0,01) by 0

in Fig.2 etc.. The "Search" operation changes the conventional aspect

of the algebraic representation based on intensive computation to

extensive computation which is performed by the software.
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FROM am TO al STEP 0.01 111

IF f(X)

X . -1.020
X v -1.010
X . 1.000

X= 1.000 TEST. -1.000 GOAL. -1.000

- next - back Esc - quit

f(X). X-3-3*

Search

Fl-Define F2-Compute F3-Search FA-Paging F7-ReadT FS-ReadG F10-End

Fig.2. Search for subdanain

in which f(x) is increasing

"Compute" enables the student to compute automatically the value of a

function for any desired element of the domain.

"Draw" enables the student to draw the graph of a function, to zoom on

subdOmains or to stretch the graph in one direction. This operation not

only removes the technical fatigue but adds a dynamic aspect to the

graphical representation.

In addition to the fact that T.R.M. enables the user to move or to

read information between representations, its operations diminish the

conceptual distances between the representations by stressing operational

parallels. Two general procedures in the T.R.M. are directly parallel in

the graphical and algebraic representation:

1) ,Convergence, by which the student "homes in" on the desired result.

It is realized in the graphical representation by a well judged

sequence of zoomings and in the algebraic representation by

intelligent use of the "Search" operation.

2) Accuracy of the required result, which uses the same operations as

convergence but is supported by other strategic considerations.
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We focused on these two procedures because the operations of T.R.M.

facilitate analogies between the graphical and the algebraic

representation with these procedures.

AN EXPERIMENT WITH T.R.M.

The T.R.M. curriculum has.been taught experimentally in two 9 -th grade

classes in junior high schools. In this paper we report on one aspect of

this experiment, the procedural analogy between the graphical and the

algebraic representation. The treatment of the two classes differed only

in the order of the learning process. One class (C1) was introduced to

functions through the graphical representation, whereas the other class

*(C2) was introduced via the algebraic

was given the computer-based task CIN1

C2 was given CIN2 (see below).

representation. At this stage Cl

(CIN= computerized interview) and

In the second stage each

introduced to the other representation and given the ,other

students performed the tasks in a classroom setting and

group was

task. Some

some were

interviewed individually. CIN1 was essentially graphical in form and

CIN2 algebraic:

CIN1: The computer chooses an undisclosed function f and displays a

rectangle on the screen. The student is asked to decide by

Interrogating the computer whether the graph of the function passes

through the rectangle. The hidden graphs took one of the following

four forms(

I Y I
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ktr.

and the student could only use the Compute operation to solve the

task.

CIN2: "Find an x which satisfies f(x)=a to an accuracy of 0.001."' The

student could use the Compute and Search operations.

Collection of data: A program was written to record student behaviour on

the tasks. For example, in one of the CIN1 tasks the given rectangle was

as shown in Fig.3 and the student's trials (using the Compute operation)

are shown numbered. The student concluded that the graph passes through

the rectangle, which, in this case, is false (see Fig:4).

FILE: VBATATILS.002

Fig.3. Student trials in CIN 1

11

5 6

Fig.4, Rectangle Tand hidden

graph in CIN1

The order in which the student calculates the points tells us about the

student's use and understanding-of the convergence procedure. We also

asked students to express their confidence in their conclusion on the

following diagram and this tells us something about their underStanding

of the accuracy procedure.

Passes Does not pass

Certain 2 2 aon, 'Flow
Certain
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An example of a CIN2 task was to solve x3-3x+475, for which the correct

answer is x31.879. Fig.5 shows the various trials of one student, who

used the-Compute operation for the first three trials and tti6n the Search

operdtion for the next two and finally returned to the compute for the

final three. Since she wrote the condition for Search operation in the

form "IF f(x) =5" her search was "fruitless". However, either on the'

basis of the f(x) values in the Search or the computed values in the

first three trials,she completed the task successfully.

x

Name: Vered Taizi Xxt,879 8 trials

X
X $11111111111,111111I X

Fig.5. Student trials in CIN2

There is clear indication that this student. appreciates the convergence

procedure but has trouble with the accuracy as shown by her Search

operations. To resolve her difficulties she returns to Compute. Other

students tackled the accuracy problem by changing the Search condition to

"IF f(x) > 5" together with an appropriate choice of step-length.

RESULTS AND FINDINGS.

The design of CIN1 and CIN2 enabled us to check two different

questions:

Analysis of characteristic student behaviour in CIN1 and CIN2
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For CIN1,. a .three level categorization scheme was found to be,

appropriate:

1) The student computes irrelevant images outside the bounds of the

rectangle. DeCisions are based on linear interpolation only and

confidence is low.

2) The student computes relevant images and his search is systematic.

The computations are managed by linear interpolation and confidence is.

high.

3) The student manages the computations by interpolation and continuity,

confidence is high, and well-founded in discussion.

For CIN2 a similar categorization was found to be appropriate:

1) The ,student works randomly with the Compute operation until a

direction is folind for the 'search. Efficient use of the Search

operatiOn operation is not made; the number of trials is large.

2) The student's analysis process converges almost from the beginning

and intelligent.use of previous Computations is made. Not much use of

the Search operation is made and then always with equalities rather

than inequalities.

3) The student. integrates Compute and Search operations in an efficient

converging solution.

From the behaviours observed with CIN1 and CIN2, wearrived at the

following sketch of general cognitive levels,of functional thinking.

1) The numerical level: The functional link between preimages and images

is not Well understood. The search for the result is not systematic.

2) The functional reasoning level: The functional link between preimages

and images is understood. The search for results is systematic but

does not use a logical sequence of computations.

3) The dynamic functional reasoning level The studeht understands the

richness of the concept of function and can search for a result by an

efficient converging sequence of computations.

Comparison of the achievements on CIN1 and CIN2 within/between Cl and C2

The analysis of the data showed that Cl (which started', the graphical

representation) had results in CIN1 similar to those of. C2, and much

better results in CIN2. 'This would seem to 4ndicate that learning the
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graphical representation first leads to a higher level of functional

reasoning. We also found that accuracy and convergence procedures

transfer from the graphical to the algebraic representation but not in

the opposite direction. However, as Gick and Holyoak (1983) noticed, if

two prior analogs are given, students can derive an underlying principle

as an incidental product of describing the similarities of the analogs.

Consequently, a theoretically based function curriculum which integrates

the various representations at an early stage, may well have advantages

over either system used in this experiment.
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OPERATIONAL VS. STRUCTURAL METHOD OF TEACHING

MATHEMATICS - CASE STUDY

Anna Sfard.

The Hebrew University of Jerusalem

The "operational" method of teaching mathematics was first
proposed in (43, on the grounds of certain theoretical claims
and experimental findings dealing with the learning of advanced
mathematical concepts. In the present study the method is
applied to mathematical induction. The new approach is
compared, both theoretically and experimentally, to the
conventional ("structural") way of teaching the subject.

INTRODUCTION

The'experimental study which will be reported in this paper is a

continuation of our extensive research on the role of algorithms in the

.acqusition Of mathematical' concepts. The thecletical framework and the

initial staged of this research have boon preseqged. in [4]. Here we shall

desCribeour first attempt at examining thedidlictical implications of the

former-sCUdy.

In [4] we suggested that abstra mathematical notions can be

conceived in two fundamentally different ways: either structurally or

operationally...People who think structurally refer to a formally defined

entity as if it were a real object, existing outside the human mind. Those

who conceive it operationally, speak about a kind of process rather thin

about a static construct.' Both approaches play an important role in all

kinds of MatheMatical activities'. The process of solving problems consists

in an intricate ,interplay between the structural and operational versions

of the appropriate mathematiCal ideas. Since computational procedures are ..

more "tangible" then abstract mathematical constructs, it seems plausible

that formation of an operational conception is, in many cases, the first

stmo in the acquisition of a 'new notion. Two experimental, studies,

pPesented in (43, provided memo initial evidence for this conjecture.

The .structural approach predominates in the most,developed branches

of contemporary mathematici: Accordingly,. structural definitions 'and

representations are taught at universities and in schools, while very

little attention is given to the processes underlying the mathematical

concepts., The appropriate algorithms are never explicitly formulated: it%a
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is tacitly assumed that by tho help of structural definitions the processes

become self-evident, and that only a little training is needed to ensure,

that they will be corroctly'oxecuted whenever necessary. In the light of

our former claims, more direct treatment of algorithms can greatly improve

the learning. If the operational conception is indeed the necessary first

stop in an accquisition of a now mathematical idea, we can probably make

the learning more effective by communicating with the student in the

suitable "operational" language, and by fostering the pupil's understanding

of processes before translating the operational' descriptions into

structural definitions. All this can be done by incorporating computer

programming into mathematics courses. While writing the programs the

student would get a profound insight into the algorithms underlying a

mathematical concept. This should deepen the understanding of the concepts

themselves and create a sound basis for the transition from operational to

structural conception. C Formation of the structural conception of basic

mathematical ideas seems to -be essential for furthe4a learning - for

acquisition of more advanced concepts. If so, the structural conception

should be promoted, in behalf of those pupils who are able and willing to

Continuo their mathematical education after matriculation. 3

In the experimental Study; which will now be described.in detail, we

tried to compare the effectivness of the "structural" (conventional) and

the "operational" (the one proposed here) methods of teaching. Mathematical

induction has been chosen am a perfect subject for this kind .of investi-

gation. Firstly, the topic can be easily presented in two ways, both

strut- turally and operationally. Secondly, while being one.of the most

important mathematical ideas taught in (Israeli) secondary school,.it-is

also considered to be particularly difficult for the learner. As such, it.

hai already inspired quite considerable amount of both theoretical and

experimental educational studies (Ell, C23, C3), ND:

STRUCTURAL APPROACH.TO MATHEMATICAL INDUCTION

The way mathematical induction is taught in Israeli' senior

secondary-schools may be regarded a typical implementation of the

structural method. According to the curriculum, 20 teaching.hours should

be devoted to the subject in eleventh or twelfth grade. Let us describe-now

the main stages ofthe learning, and at the name time indicate and'analyse

the difficulties which may be encountered by the learner at each of them.

1. Recursion. To begin with, the student is presented with the idea
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of sequence. It is assumed that the pupil is already well acquainted with

the concept of function (in its structural version!), so the sequence can

be considered nothing more than a particular case of the familiar mathema-

tical construct. The recursive representation of a sequence (see Box 1(a)),

however, is a new idea; which is explained by help of appropriate examples

and exercises. Since the sequence is presented as a static entity (composed

of infinitely many parts), the rule of recursion can only be perceived as a

constant relation between its adjacent components.

Here, a serious difficulty may stem from a quite unusual role played

by the variable n. To find a rule of recursion for a given sequence (such

as f(n)0n2), the student has to begin with the substitution of n+1

instead of n into the formula which defines the seouence. Until now, the

variables such as n were used only in their structural, static sense' any

letter denoted an unknOwn magnitude, which was assumed to remain constant

throughotitthe entire process of solving a given problem. Now, for the

first time, the students must cope with an additional, dynamic meaning of a

variable. While substituting n+1 instead of n, they have to be aware that

the letter n serves both as a "given number" (n+1 is its successor), and as

a "cell" for storing .changing magnitudes. This double role of n may be

quite confusing for unprepared learners. The bewildered student would make

such classic mistakes like adding 1 to f(n) while looking for f(n+1).

2. The principle of mathematical induction is introduced in its

formal axiomatic version, as presented in Box 1(b).

It seems pretty obvious that the fully developed structural

conception of the notion of infinite set is indispensable for understanding

the underlying idea of equality between K and N. The way the two sets are

compared may be an inexhaustible source' of additional difficulties.

Everyday classroom experience clearly shows that many students cannot get

along with the Statements of the form Vn IP(n) => P(n+1)], which constitute

the very heart of an inductive proof.

To get A deeper insight into the problem, we asked 16 students who

had Just finished the regular twenty-hour course on induction to describe

the main stages of inductive proof (see Test 2 in Box 2). Only four answers

could be regarded as correct. The remaining, twelve responses clearly

indicated some serious problems with quantification. More often than not,

the statement Vn (15(n) => P(n1.1)3 was transformed into IVn P(n)] => P(n+1).

Indeed, seven students wrote! "We have to show that if-f(n) =g(n) f o r

e v e r'y 'n , then f(n+1)=g(n+1)" or "Let us assume that t h e

functions a Oliqu'a 1 , and then show that f(n+1)=On+11".
40-
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Box 11 Structural vs.operetional approach to math. induction

Structural ' Operational

Representation (a) (c) v1=01
of recursively n1=0;
defined

14(0).0
f(n+11ef(n)+2n+1 .N while n(n.

sequence (recursion ruleY begin
ye=y+2n+1) (recursion rule)
nlen+1;
end;

The principle
of induction

(b) IF KcN and if
-W. OEK

(d) 'IF two sequences, f and g,
a. have the same initial

b. for every nEN value
If nEK b. can be computed by the
then n +1EK- same recursion rule

THEN--RsN , THEN f(n)=g(n) for every n.

The same misplacement of quantificators might'be responsible for another

common answer (5 cases): "We have to prove. that if f(O1 eg(0), then

f(n+1)=g(n+1)". It seems quite likely that the students skipped the

inductive assumption simply because they felt that the "premise" they were

going to use was identical with the proposition which had to be proved.

This kind of mistake can be easily explained on the grounds of our

former study, devoted to the notion of function EU. According to our

findings - and contrary to the expectations of the designers of

secondary-school curricula - the majority of pupils do not .conceive

function as "an aggregate of (infinitely many) ordered pairs". Rather, they

identify it with a certain computational formula. For these students, two

functions are equal only if one of the appropriate formulas can be obtained

from the other by certain algebraic manipulation. If so, the quantificators

have no significance whatsoever, and the equation "f(n)eg(n)" is equivalent,

to the statement "f and g are equal".

Finally let me remark that the students who do manage to put the

quantificators in the right places, may still have some probleth with the

general logical' structure of the axiom. If an induction' is a-Method for

proving the propositions 'beginning with the words "For every nEN...", the

question can rightly be asked, why not use this very method i n s I'd e

the inductive proof, while dealing with the statement Vn C P(n) => P(n +1)].

Since it seems that the method should be used (recursively() over and over

again, the student may feel entangled into a vicious circle.

3. Proving by induction. The'principle of induction'is applied in a

series of proofs dealing, with various properties of numerical sequences.

The problems 2 and 3 presented in Box 2 (Test 3) are two typical examples'

of exercises apearing in the conventional textbooks.

436
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OPERATIONAL APPROACH TO MATHEMATICAL INDUCTION

For our experiment, new teaching material on induction was prepared.

This time the subject was presented in an operational manner. While

describing the main stages of learning we shall argue now, that within our

spocialapproach Goat of the previously described difficulties can be

either easily overcome or avoided altogether.

1. Recursion. According to our program, at the first stage of

learning the OuPils get acquainted with many kinds of recursive calcula-

tions. On the grounds of our previous experimental findings (E43) we

assume, that the majority of students conceive function (sequence) as a

computational process, rather than as a static construct. Accordingly, a

rule of recursion is presented as a proscription for some special kind of

computation. The student's task is not only to understand and to execute

recursive operations (represented by the suitable algebraic expressions),

but oleo. to formulate iterative algorithms for recursively defined

functions in a simple programming language (see Box 1(c)). This additional,

operational representation As an effective tool for dealing with a new,

dynamical role of a variable n. Indeed, in a programming language, a

variable stands for a cell in a computer's memory, so its dynamical meaning

is self-evident. After some experience with operational representations,

the student should no longer be confused by the double role a variable

plays in algebraic representations.

2. The principle of mathematical induction is presented in "opera-

tional" terms (see Box 1(d)). While stressing the computational aspects of

the concept of function, we can speak about equivalence of-algorithms

instead of dealing with equality of infinite sets. E Although the present

version may seem somewhat restricted in comparison to the former one, it is

in fact equally general. Indeed, any statement of the form "P(n) for every

nEN" can be transformed into a proposition on functions: The charac-

teristic function of P is equal to f.; while f(n)=1 (TRUE) for every nEN". 3

The operational presentation is free from all the previously

mentioned didactical disadvantages of the structural version. Firstly, the

confusing proposition Vn EP(n) .-P(n+1)3 practically disappears here under

the cover of less formal (but bysno means less exact) statement "f and g

can be com- puted by the same .recursion rule". This statement can be

easily translated into appropriate actions. For instance, if f is the

function presented in Box 1, and if gln).n2, then the student has only to

show that g(n+1) can be' from yug(n) by the same recursion rule
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y+2n+1, which - when applied to y=4(n) - would yield f(n+1). Since the
confusing equalities f(n)=g(n) and f(n+1)4(n+1) are not mentioned at all

(the algebraic transformation y+2n+1 has to be applied 'to only one function
at a time), there is no room here for the incorrect quantifications.

Secondly, this time there is almost no danger of apparent vicious circle:

The principle of induction has been phrased here as a meta - mathematical

rule rather than as a mathematical axiom.' Indeed, instead of dealing with
a method of proving an equality of two infinite sets, we speak about a way
of showing that f(no)=g(no) for any given no. Thus, in our version

the general quantificator has been transferred to the meta-language, and

after this the inductive proofi would involve in fact only limited

quantifications (Vn<no...).

3.Proving by induction. In our teaching unit' the principle of
induclion is used only. for proving equalities. of functions (equivalence of

algorithms). Other properties of numerical sequences (like those mentioned

in problems 1 and 3 in Box 3, Test 3) are not explicitly dealtmith. Hence,
our coverage of the subject is not as broad as required by the curriculum.

The entire unit, however, is meant for not more. than 6 -41 teaching hours

(provided the students have some previous experience with programming
language), so it can be incorporated into a regular course on induction as
an introductory chapter.

COMPARATIVE EXPERIMENTAL STUDY

Our experimental investigation of the structural and oper4tional
methods of teaching is still under way. Some tentative conclusions,
however, can be already drawn from the results'of the pilot study, which

will now be presented in some detail.

The experimental material on induction has been taught to four groups
(56 students) in the Centre for Pre-academic Studies at the Hebre4.

University. After this six-hour introductory course, the pupils had to
complete their training in the regular mathematics classes, where the
subJeit was treated in the usual structural manner. 'The experimental
groups have been compared to suitable control groups, in which induction
had been taught only by traditional methods. In this comparison, three
different tests have been applied (Box 2). Because of technical reasons,

each test could be administered only to a part of the control groups.

Test 1, Recursion. The problem which was presented in this test was

quite unusual 'in comparison to all the questions on recursion our students
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BOX 2: The results of the experiMent

TEST 1: Recursion
PROBLEM: Given 4(0)=0, f(n+i).+(n)+n, and g(n).f(n)+4(n+1)

- find a recursion rule for g(n).

RESULTS: Experimental group Control group

N
no. of correct answers

19
13 (68.4%)

19
3 (7.4%)

TEST 2: The principle of induction
QUESTION: a. What are the main stages Of an inductive proof for

a claim: "f(n) . g(n) for all natural n" (f and g are
functions from N to N)?

b. How can you be certain that f(n) . g(n) for any given
n, if the equality of the two sequences has been shown
by induction?

RESULTS:
Exp. group Contr. group

N 18 16

a: -correct answer 18 (100%) 4 (25%)

I,: -"it is an axiom "
-"f(n) and g(n) are
obtained from f(0).g(0)
by the same operations."

5 ( 28%)

12 (67%)

12 (75%)

3 (19%)

TEST 3: Proving by induction
PROBLEMS: I. Prove that it tlI)=1- and tIn+1:=.1(0+2n then the last

digit of 4(400) is 6.
2. If f(1).1 and f(n+1).f(n)+(n+2)/3, and if

ginIm(n+1)(n+2)/6, what is the truth set of the
equation f(n) = g(n)? Prove this

3. Prove that mod(4",3)=1 for all n.

RESULTS:
PROBLEM 1 PROBLEM 2 PROBLEM 3

E C E C E C

no. of s's who participated
no. of s's who chose the problem
Average score (out of 10)
no. of s's who got maximal score

14
8
7
4

14
6
5.1

13
8
8.5
6

13
4
1.5

---

29
22
8.5

16

29
23
5.9
7

had met before. The figures in the table show, that in spite of the non-

standard sequence definition, the experimental group was quite .successful

in finding the appropriate recursion rule (g(n+1).g(n)+2n+1). In contrast,

the majority of the control group failed in the task. It was quite clear

that for the traditionally-instructed students, finding the recursion rule

usually meant nothing more than \writing a n y formula for g(n+1). Indeed,

many students wrote: "The recursion rule of g is g(n+1)=24(n)+3n+1". Those

who-discovered (by. help of numeric examples) the explicit formula. g(n).n2'

claimed hat the rule is 0(n+).(n+1)27

Test 2:. The principlelof induction. The results obtained on this test'
;

in the- control group have been reported above. AcordIng to our expecta-

tions, the answers-given by,theexperimental group' were. much more satisfac-

tory. Literally all- the participants of the experiment could restate the
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principle of mpthematical ;Induction (in its operational version), and most

of them were able to explain it in quite convincing way.

Test 31 Proving by induction. The data presented here have been

collected on three different exams in mathematics. Every one of our

students participated in only one of these exams. The pupils had to solve

four problems out 95 six. Only one of these problems dealt with induction.

The question on induction which appeared In the first exam (Problem 1) was

quite unusual fOr both experimental and control groups. The one which was

given in the second questionnaire (Problem 2) was rather standard, although

it was put in somewhat unconventional terms ("What is the truth set..")..

The problems like the last one (Problem 3) did not appear in our

experimental teaching unit on induction, but they were known to all the

students from the regular course on induction. As can be seen from the

data summarized in Box 2, the experimental group achieved significantly

better results in both standard and non-routine problems.

CONCLUSIONS

It should be pointed out that the presented study suffered from

certain technical, shortcomings. Firstly, all our comparisons were based on

rather small figures. Secondly, the experimental groups participated in

both experimental and regular courses on induction, so they spent on the

subject slightly more hours than, the control groups. Even so, we have

quite good reasons to believe that the unconventional method of teaching

did contribute to the students' understanding of the subject. Indeed, since

all the results indicated the same strong tendency, the general advantage

of the experimental groups seemed to be undeniable; and since our tests

contained mainly non-standard tasks, which required much more than

technical skills, it is rather unlikely that this advantage was merely the

result of the few additional hoRrs of training. It remains to be seen if

our future, better controlled s,udies will confirm these conclusions.
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EPISTEMOLOGICAL REMARKS ON FUNCTIONS

Anna Sierpifiska

Institute of Mathematics, Pol.Ac.Sci.

Abstract. The paper contains a tentative epistemo-
logical analysis of the'notion of function both-
fromthe phylo-_and ontogenetic points of view.
The analysis is a part of a research aiming at e-
laborating didactical situations helping: students
.to overcome episteiologidal obstacles related to
functions and limits.

The paper presents a further part of 'research briefly
reported in the XIth PME Proceedings (Sierpillska, 1987a). The
research aims at elaborating didactical situations favouring
the overcoming of epistemological obstacles related to func-
tions and limits in 15-17. y.o, students (cf..Sierpifiika, 1987b,
1985a). Onedof questions that such a research raises is the
question of meaning of the'mathematical concepts involved.
This ie the questiOn we ask in this paper: we reflect on upon
the epistemology of the notion of function.

I.- Epistemological obstacles related to functions
Re e,o, see. Bachelard (1938), Brousseau (1977),.Sierpinska
(19851)..

We have distinguished several stages in the historical
development of: the notion of, function (see. Fig.1).

It seems that the development:of the notion of curve con-.
tributed in many ways to that of the notion of function: it
nrovided a context in which analytical tools for'describing
relationships'COuld be developped. The beginnings of calculus
were, in fact, linked with.exploration of curves.' Curves

2 4 1
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were described by proportions between-some auxiliary segments

(diameter, axis,.,) as in Fermat (Fig.2), or by.equationsbet-

ween these, :as in Newton (Fig.3). The system of auxiliary seg.

mente was chosen for every particular curve or class of curves

separately: coordinates were not, numbers determined by a sys4!4-

ten of coordinates chosen beforehand. They.were egments

geometrical objects. Curves were not regarded as graphs of re-

lationships between thaw auxiliary segments, They. were taken

for what they appeared to our eyes: geometrical objects or tra-

jectories of moving points ("geometrical" or limeohanical9.

We shall, name this approach 'to curves -"concrete" - inso-.

far as it is.based on direct Elmtsa,:and contextual relations,

Perhaps this."concrete" approach at curves was one of the most

serious obstacles in the development of Calculus. Some forms

of this obstacle seem to be still present in today's students.

II.- Students' conceptions of functions

Three groups of 15-17 y.o. students were involved in the

research. Here we shall refer mainly tssonceptions of 4 hums-

nities students: Agnes and Ewa (17) -and Darek and.Gutek (16).

The students underwent a series of sessions composed of dif-.

.ferent didactical situations. A didactical situation is cha-

racterized, among others, by a,social'context, type-Of teacher

interventions and a mathematical context. In our research, the

EST COPY AVAILA,7;'), 242



- 570 -

mathematical context was based on the topic of properties of fi-

xed points of functions (Engel, 1979) . Social contexts such as.

'Working in small groups, communication of meaning between stu-

dents were used. Negotiation of meaning, suggestion of a way .

of search, discussion with students are examples of our inter-

vention s.

In Poland, the notion of function is introduced to 13 y.o.

An its very elaborate 'abstract form. But the general definition

is so comprehensive that it says nothing to children that know

very little mathematics and even' less physics. Children are gi-

ven examples and different symbolic and iconic 'representations

are shown to them. It is on 'this material that 'they build. their

meaning of the term "function" and more often than not this mea-

ning has nothing ,or very little to do with the most primitive

but fundamental conception I of function (a relationship bet.!

wenn 'variable magnitudes). A studentrs conception of function

can be a complex (in the sense of L.S.Wygoteki) composed, of one

or more degenerated forms of the historical conceptions II - .V.

These. forms may well function parallelly without there. being

any conscious link among them.

We have divided the students' coneeptiOns of functions

into two main categories: "concrete" and "abstract" (Bernstein,

1971) . In these, further distinctions...are made (see Table 1)

Concrete- conceptions of functions in .studants

- mechanical (CM-f) :3'a function is a displacement of

points (in non-verbalized versions .this Conception corresponds

to the historical stage I)

-synthetic geometrical (CsG-f) :62 a function is a "concre-

te"" crtwayak 1,,e.., a geometrical object, idealization of a line

on paper or a trajectony of...a moving point;

-algebraic (CA -f) Pa 'a function is a..formula with "x" and

-y" and equality sign; it is a string of symbols, Iettere-atuL,

numbers;

Abstract conceptions' of functions in' students:

-numerical (AN -f) :® a function is.a transformation of

some things into other things; _these new things or their posi-

tion can be described 'by numbers (the values---of the function);

a -function is given by a sequence of its values. This concep-
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tion ressembles tne historical conception II but it may be ye:.

gue or implicit in the student's-mind; in particular, the nece

salty of naming.the parallel-sequence of arguments may-not be

felt at all;

-algebraio (AA -f) pm a function As an equation or anfe.1

gebraic'expression containing variables; by putting.numbers in

place of variables one gets other numbers; the idea that the

equation describes a relationship between variables is absent.

here. The conception is a degenerated form of the historical

conception If (stage IV without state I);

-analytic geometrical (Aael-f) sa a function is an "ab-

stract" curvin a system of coordinates, i.e. the curve is a

representation of some relation; this relation may be given by

an equation and curves are classified according to the type

of this relation (first degree, algebraic, transcendental,..);

it is not the relation that is called function; it is the curve

itself. This conception is a degenerated:form of the h.o. V;

-physical (APh4) I. a function is a kind of relation-

ship between variable magnitudes; some variables are distin-

guished as independent, other ane assumed to be dependent of.

these; such relationships may sometimes.be represented by

graphs. This is close to the h.c. VI.

The A Ph -f was not Observed in any of the students. We

have added it here,.however,'because we think that such a con-

ception is attainable by students of this level (indeed it is

implicit in their conceptions but it is this that they

would call-"function") provided that appropriate mathematical

contexts are used to develop it. Agnes was quite close to it.

The context of attractive fixed points of functions, especiala..

ly if extensive use of graphical representations is made, pro-

ved to favour the kaGr-f and-eeemed even to create obstacles to

the development of the desiredconception3I.

To better be able to analyse the students° speech events

we have constructed a'"frame" for the definition of an attrac-

tive point of a function. The frame divides a possible defini

tion into parts each of which answerse particular question.

The first question is: "what is the-domain of our invesiiga-

tion?". Students' response to this question allowed us to make
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inferences regarding their conceptions of function.

posteriori we have established a table of studentean

ewers to these questions. We have scored these answers, the,

maximum score being-attributed to the best of all'studentsaan-

ewers in all oases except the first. question mentioned above.

These were.scored as shown in Table The scores were not us
sad to evaluate answers as right or wrong, We just. needed

a tool Allowing. us to detect in a more objective way moments

of important conceptual "jumps" and thus judge of theAnflu-

ence of particular social oontexts and interventions. The s-
oomes.in vulgar fractions can also-be used-as'oodes for an-
swers,

Table 2 chomp the. students° conceptions of functions as
they developpad through different social contexts. Further re-
search consieted'in close analysis of moments where high con-

ceptual Sumps seemed to be made. For example, AgOs made her

great jump in the social context Of work in smell'groups under
the influence of criticisms of her grouP-mates. At the start,

Agnilelconception of function was an.f. While explaining her i-
deae-ofsolving the problem she gradually developped tools for
analytical representation of relationships between the varying
distances of moving points from the fixed point. But she refused
equations of the form "y equalsP. She preferred proportions.

Avails seemed to be recapitulating the 'history of the notion of

fundtion, later on, while working on a written communication of

the concept of attractive fixed point to. a class-mate, she dis-

played an interest in numerical approximations of terms of se -

-quences- xo, xfloc, f(xO) that were included in materials she

and her group received. She made right inferrences about the
ratioyln which the sequences were increasing or decreasing,

III.- Final remarks

1. The most fundamental conception of functionis that of a re-.
lationship between variable magnitudes this is not develop -

ped, representations such as equations and graphe loose their
meaning and become isolated one from the other,; A'Aeviation
from the geastic line is made. Introducing functions to young
students by.their elaborate. modern definition is a didactical
error - an antididactical inversion (cf,Freudenthal, 1983).
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2. The context of attractive fixed points of functions intro-

duced with heavy use of graphical representations doep not

help to develop the above mention. ed fundamental conception

of function. It-is too
geometrical-algebraic. A context of

physical magnitudes and various relationships between them

would probably be better. This demands a cooperation between

the mathematics and the physics teachers.
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FORMATIVE EVALUATION OF A CONSTRUCTIVIST MATHEMATICS

TEACHER INSERVICE PROGRAM

Martin A. Simon, Mount Holyoke College

The Educational Leaders in Mathematics Project was
designed to assist secondary mathematics and elementary
teachers in developing a constructivist epistemology as
the basis for mathematics instruction. The Project

provides teachers with an intensive two-week summer
institute and a full academic year of weekly classroom

supervision. Formative evaluation, two and a half years

into the Project, suggests that (1) these two components
result in significant classroom changes, (2) teachers'
classroom implementation efforts can be described by one

of four patterns, and (3) some important training and
support needs of the teachers are not met by this

structure.

INTRODUCTION

SummerMath for Teachers' Educational Leaders in Mathematics Project

(ELM) at Mount Holyoke College is an inservice program for elementary

teachers and secondary math teachers. The program is designed to (1)

assist inservice teachers in developing a constructivist approach to

mathematics instruction (Mundy, Waxman, and Confrey 1984), and (21 to

develop teachers as workshop leaders to introduce their colleagues to a

constructivist approach to mathematics instruction. This report will

focus on the first of these two goals.

PROJECT DESIGN

Following is a description of the ELM Project. For the purpose of

this report, we will focus on the first three stages (out of five), the

stages which are most directly related to the inservice development of Oe,

participating teachers.

Stage Ono: Summer Institute Two two-week institutes (one for

elementary and one for secondary) provide an' introduction to

constructivist mathematics instruction. Participating teachers experience

** Work supported by National Science Foundation Grant OTEI- 8552391
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the role of student in a constructivist classroom, constructing

mathematical concepts which are new and challenging for them (maybe

familiar concepts, but explored in greater depth). They also focus on

children's learning of mathematics and work on their ability to ask

probing questions and to design sequences of constructivist lessons.

Stage Two: Academic Year Follow-up Teachers participate in the

follow-up program from September through May following their involvement

in the summer institute. An ELM-staff member meets on a weekly basis with

each participating teacher in that teacher's classroom. During the math

class, the staff member either observes the teaching of the participating

teacher or provides demonstration teaching. Following the math class, the

teacher and ELM staff member meet to discuss what happened during the math

lesson, to informally evaluate the learning, and to discuss possible next

steps. Each teacher chooses those aspects of the summer's work that she

wants to work on implementing. During this academic year, teachers also

meet with their ELM colleagues and Project staff in four workshops in

which further work is done on developing constructivist instruction, and

discussions take place between teachers about implementation successes and

difficulties.

Stage Three: Advanced Institute The Advanced Institute is designed

for teachers to deepen their knowledge and understanding of constructivist

math instruction and to further develop their teaching skills', The

institute begins, once again, with an opportunity for the teachers to

experience the role of learners of mathematics. A far greater portion of

this institute is spent in the development and critiquing of

constructivist lessons.

STRENGTHS OF THE PROGRAM.

Feedback from participating teachers has helped us to identify

several strengths of the program:

1. In the summer institute, teachers construct their own concept of

constructivist education. Through reflecting on their own learning of

mathematics and the learning of children, teachers reorganize their

internal models of mathematics instruction. Teachers have written:

As the week has progressed, my conceptions of how
mathematics is learned have changed daily, sometimes even
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hourly. I know that what I think and feel now is not the
total picture or a final answer.

a I participate in this institute and experience
first-band the growth of my own mathematics..., my
conceptioni have had to start to change to resolve the
conflict of my previous beliefs and the techniques I have
seen work this week.

After this week, I discovered that my most meaningful
.

learning experience was not when I was on the correct
path, but when I was off on a tangent that led absolutely
nowhere. I out of ignorance have almost consistently
prevented this type of valuable learning experience from
happening in my classroom.

The opportunity for teachers to construct their own understandings

about mathematics learning and teaching results in teachers' personal

commitment to implement their learnings and teachers' sense of control

over the changes to be made.

2. The follow-up program: Teachers have reported that they value

the moral support, the opportunity to discuss difficulties as well as

successes with. ELM staff and colleagues, the modeling of demonstration

lessons in their classrooms, and the help in critiquing lessons and .

thinking about next steps. The consistency of the Structure, knowing that

a staff member would be there every Week, prevented their putting

implementation efforts on the back bilrner. Teacheri commented:

It is every week. I enjoyed the chance to reflect on what
has been going on. It provides me with a focus, a time to
set aside for thinking about what I want to accomplish,
and how to determine if that happened. Without the, weekly
meetings, I fear the time would be spent doing other
things.

My consultant keeps me fresh, provides alternatives when I
have run out, puts the issues in a different perspective,
provides an excellent model for questioning skills.

I like best the support of the consultant and the ongoing
motivation that she provides. Without the follow-up
program, I would not have had the stamina to continue."

The-major commitment of consultant time and financial resources

required to carry out a follow-up program of this scope seems to be

necessary for successful implementation of constructivist principles.

3. Teachers valued the chance to return for additional summer work

following a year of classroom implementation. The most consistent comment
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that we heard is that during the Advanced Institute, previousjearnings
"really seemed to come together." Teachers wrote:

The Advanced Institute is most important because you have
one year's experience to draw upon when you arrive, and
many questions and.concerns. I feel that I have
internalized many of the behaviors that I had been
approaching rather tentatively.

Learning to teach math using a constructivist and problem
solving view is an overwhelmingly difficult and expansive
undertaking. In no way is a two-week institute adequate
in helping us develop our understanding of how students
learn and guiding us in making the necessary changes' in'
how we teach. Actually,1 think I would profit from
coming to the Advanced Institute any and every summer.

ASSESSMENT AND CHARACTERIZATION OF IMPLEMENTATION

Assessment of Implementation: The Levels of Use. (LoU) structured

interview (Hall, et al 1975) was used with each of the teachers at the end
of the follow-up program to:determine-the extent to'which they had

implemented a constructivist approach to instruction. The LoU interviews
are scored by assigning one of the following levels:

Level 0 - nonuse Level IVa - routine
Level I - orientation Level IVb refinement
Level II - preparation Leyel V - integration
Level III - mechanical use Level VI - renewal

As the Project proceeded, we settled on a refinement of the LoU
scoring to better differentiate among the various implementation efforts

of our teachers; separate Lou levels were determined for teachers'

implementation of "constructivist teaching strategies" and for the level
of implementation of a "constructivist epistemology."

Teachers who implemented "strategies" chose to use one or' more tools

of constructivist teaching because of their perceptions that these tools
would contribute to their students' learning. (Eg. "I haie been asking

probing questions, because it is important that my students think about

why things that they do work.") Teachers who implemented strategies may
not have had a sense of the part that these strategies can play in.

facilitating the construction of mathematical understanding. The
strategies that teachers identified and which emerged as significant in
the program-were the following:
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-Use of non-routine problems
- Use of Logo, the Geometric Supposers or other computer

tools
.

for exploration
- Use of manipulatives and diagrams

-Exploring alternative solutions
-Problem solving in pairs and groups

-Use of probing (non-leading) questions

-Providing wait time
-Asking for student paraphrasing of other's ideas

-Pursuing thought processes following right.and wrong

answers

The teachers who were judged to have implemented a "consructivist

epistemology" saw the strategies. as serving the larger goal of

construction of mathematical understandings and consequently made

decisions on if and when to use particular strategies based on whether

this larger goal would be served.
These teachers tend to be more

concept-oriented and more self-sufficient in generating ideas for

instruction and evaluating the results of instruction.

Lou scores for the 1986-87 ELM teachers indicated that all

`twenty-eight had implemented at least one strategy at Level III or higher

and twenty-five at Level IVa or higher. Twenty-one had adopted a

constructivist epistemology at Level III or higher, nineteen at Level IVa

or higher.

Characterizing Implementation:
Combining the LoU ratings, which described

only the implementation level in hay, with weekly observations throughout

the follow-up year, four patterns of implementation became clear.

1. For some teachers the combination of their previous

experiences/ideas and their experiences in the summer institute resulted

in the adoption of a constructivist
epistemology from the beginning. Such

teachers described themselves in the following ways, "I knew that based

on what I saw and understood this summer that I had to completely change

my approach to teaching." and "The night before the first day of school I

was paralyzed, I couldn't just teach the way I had in the past. I knew

what I wanted to do, but I didn't know where to begin."

Teachers in this group began, sometimes awkwardly, to develop lessons

that focused on student construction of concepts. Throughout the year,

working with an ELM staff person, they refined their efforts,

2. Some teachers chose to integrate particular teachihg strategies

(eg. wait time, prob amerions, group work, use of manipulatives) into
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their traditional ways of teaching. Some of these teachers never

progressed further. They were pleased, sometimes excited about the

benefits that they perceived'from using these strategies and continued to

include these strategies as a regular part of their teaching. Others of

these teachers, through their work with ELM staff and regular analysis of

student learning, were able move from the implementation of isolated

strategiei to the development and implementation of a constructivist

epistemology.

3. Some teachers

once or twice a week.

and/or manipulatives,

characterized their efforts as "doing SummerNath"

At these times, they used non-routine pfoblems

they asked probing questions, refused to give the

answers to the problems, and often had the students working in groups.

They seemed to believe that these types of experiences were valuable for

enrichment. However, they considered it separate from the curriculum that

they were supposed to "cover."

As the follow-up year progressed, some of these teachers began to see

connections between "doing SummerHath" and the curriculum.. Seeing the

understandings that were developing as a result of the new strategies,

they began to see how aspects of this work could enhance or replace the

curriculum work that they were doing. For some the result was the

development of a constructivist epistemology.

4. A few teachers seemed to employ one or more strategies once a week

when the ELM staff person was there because they felt that was expected of

them. The lack of personal, commitment was generally an obstacle.

However, occasionally positive response on the part of the students

persuaded the teacher of the value of one or more of the strategies.

LIMITATIONS OF THE PROGRAM

In observing teachers in the classroom, talking to teachers and

leading their written feedback, a number of limitations of the current

program have become clear.

(1) Hany of the elementary teachers are limited by their own

understanding of mathematical concepts, and of mathematical thinking in

general.

students

teaching

Many of these teachers were not successful as mathematics

and took very little mathematics.. Those who are developing

strategies to help students discover important mathematical
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concepts are feeling the limitation of not understanding the concepts

further, or not having more insight into the interconnections td different

mathematical concepts. Many of them express the feeling that during the

summer institutes, they had their first taste of success in mathematics

and a feeling that they could learn to understand mathematics. They

express a willingness to study more mathematics, but they are looking for

an opportunity to study mathematics taught using a constructivist

approach.

(2) Because of the greater complexity of mathematical concepts

taught in the secondary schools, secondary teachers struggle more than

elementary teachers in designing concrete activities as a foundation.

Also, they are often unable to do the task analysis necessary to identify

subconcepts and connections with prior concepts:

(3) Both elementary and secondary teachers, while novices in

constructivist teaching, are being put in a situation of having to create

their own curricula. This is an overwhelming task, only somewhat mediated

by the support of the ELM staff member during follow-up. Constructivist

teaching requires a certain amount of creation on the part of the

teachers, but does not require teachers to invent everything from scratch.

Curriculum materials consistent with constructivist teaching must be

developed, and materials and references that are concept-based rather than

topic-based, as in conventional textbooks, must become available.

(4) The higher the grade level, the more frustration and conflict

the teachers experience because of the weak conceptual foundations of

their students. The constructivist teacher who spends more time listening

to students, evaluating their understanding, and creating activities which

allow them to build on previously firm understandings, come into contact

frequently with the huge gaps in understanding that students have.

Whereas the primary school teacher may be comfortable working on concepts

that should have been learned a year or two before, the high school

teacher, faced with students who need a course in fractions or ratio but

find themselves in an algebra II or trigonometry class, experience a great

amount of conflict between the schools' expectations of what they should

teach and their awareness of what their students actually need.
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CONCLUSION

The ELI( Project has demonstrated the power of .combining a

constructivist summer institute experience with an intensive follow-up

program. Classroom implementation ranged from the incorporation of new

and powerful teaching strategies to the construction of mathematics

programs based on constructivism. The Project's work has also highlighted

some of the unmet needs of teachers which prevent them from functioning

more fully using a.constructivist approach. The identification of these

needs can inform and direct future efforts.

The extent to which ELM teachers were able to develop and implement a

constructivist approach varied greatly. This large variation can be

attributed to characteristics of the teachers prior to entering the

program. The relationship of teachers' characteristics (pedagogical

schema, attitudes, beliefs, and personal factors) to the development of a

constructivist approach to instruction is poorly understood and needs to

be investigated.
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CONSTRUCTION AND RECONSTRUCTION: THE REFLECTIVE. PRACTICE. IN.
MATHEMATICS EDUCATION

Beth Southwell
Nepean College of Advanced Education

An initial study was carried'out to investigate the
relationship' between experience and reflection on that
experience. In'this study third year teacher education
students were asked to prepare a structure of meaning
diagram using problem solving ae the focus. Students'
responses were encouraging, and indicat,.! that they
perceived the technique as being valuable in helping
them to synthesise isolated understandings and proMpt
connections not previously seen.

The use of the structure of meaning techniqUe has been
further refined in.the light of the pilot study and
applied to a more.closely defined area of problem
solving. It has also'been applied to other areas,
namely geometry and measurement. -.

This investigation into the relationship between actual
experience and reflection on that experience was
extended to another technique: The one chosen was'the
repertory .grid by which subjects were encouraged to
explore theii,own thoughts and feelings in relation to
their problem' solving program. The technique relies on
subjects establishing poles at either end of a

continuum -and comparing elements of the subject with
these poles.

The students found that constructing the grid following
a fairly structured procedure was a valuable task in
itself. According to their reports the completed task
was even more valuable.

Some attempt is made to evaluate this and other
reflective practices in the process of learning.

One of the critical issues in learning mathematics which none of
the psychologists seem to have adequately covered is the balance
between theory and practice or the interplay between experience
and actual acquisition of concepts. The reflection upon the
problem solving process is a key element in learning through
problem solving. Techniques devised to enhance the reflective
process need to be applied to mathematical problem solving and to
mathematics education research.
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Several have,emphasised the role which reflection has in learning

mathematics. Skemp (1979, 1980) makes a distinction between
intuitive and reflective intelligence. Kilpatrick (1984) in. his

address to ICME V in Adelaide stressed its importance. Wittmann

(1985) has developed a theory of reflective practice. Burton
(1984) and Mason (1986) apply reflection to the problem solving

process.

REFLECTIVE PROCESSES

Despite the general acceptance of the necessity. -for reflection

for learning to be effective, not many havesattempted to define
or describe reflection or to develop reflective strategies.

The processes involved in re-evaluating experience are

association, 'integration, validation, and appropriation. New
ideas need to be associated or connected' with what we know
already. Then associations need to be integrated into a new

whole in an organised way. What we have started to integrate

must be validated or tested for such' things as internal,

consistency and for consistency between our new ideas and those

of others. Then for some, though not all, learning tasks, we
need to allow them to enter into our sense of identity and become
part of our value systeM. CommitMent to action is then possible
and should follow.

Strategies to help learners to reflect on their' experience are

varied. Some have been in use for a long time, though not always

in mathematics. Such simple procedures as discussion, keeping
logs or conversation, while'recognised as valuable, are not often
used consciously to assist the reflective process. Several more

diamatic strategies have been developed at the Centre for the

Study of Human Learning at Brunel University. One of these is

the Structure of Meaning Technique. Its purpose is to help a

learner reflect on how he orshe is structuring new knowledge.
It allows learners to depict diagrammatically what they consider

important items of meaning.

A REFLECTIVE STRATEGY IN ACTION

It seemed to the writer that this would be a useful technique to
employ with trainee teachers'both as a means of clarifying and
integrating their own knowledge, but also as a model.for modified
use in school. Third year students at Nepean College of Advanced
Education were completing' a sequence of three .courses in
Mathematics, during, which problem solving and mathematical
investigations had been stressed. .Thirty three students agreed
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to participate in a .brief study to test out the effect of
.eipplying the Structure of Meaning technique to the area of

problem solving. They were not given any warning aa.to when the
process would be applied, hence had no opportunity to. do any
preparation.

The students were in two groups, the first of thirteen, and the
second of twenty. The task was explained to them in terms of

constructing a diagram linking critical aspects of their
understanding of the process of teaching problem solving. The
first group were given a simplified version of a Structure of
Meaning diagram with an example of how it might relate to problem
solving. The second group was given the simplified version but
not a specific example. They were, however, given the suggestion
that they might find it worthwhile to list some of the critical
aspects first before trying to put them into the diagrammatic
form. They were all asked to construct the diagram, then explain
it to their neighbour. The final part of the task was to write
down how they felt about the task, what was good about it, what
was not good and how it helped them - if it did.

The students responded well to the task. Some found it difficult
to get started and their final products were not as. sophisticated
as they might have been, but everyone expressed their feeling
that it was a beneficial process. The following are some of the
reasons given:

"It was a form of revision."

."It made us think for ourselves."

"The procedure was helpful in culminating thoughts
problem solving."

"It reveals the importance of teaching being organised in a
logical sequence."

"It shows how skills learnt in other areas of the
curriculum can be used and are necessary for problem solving."

"It drove home the inter-relatedheas of aspecta of problem
solving - making it clearer to view problem solving as a

process in totality, rather than a number of discrete

aspects."

"This was helpful in providing the opportunity for me to
evaluate my own ideas about what the aspects of-teaching are
and the inter-relationships between these aspects. Through
reflection on my previously held knowledge about the aspects
of problem solving I am now more sure about the needs of the
children when learning problem solving."
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The example given by the writer appears to have influenced the
line of approach taken by a number of students in the first. group
in that their diagrams included the three approaches to teaching .

problem solving, namely, teaching for problem solving, teaching
about problem solving and teaching through problem solving.

The second group completed a list of ideas before putting them
into their diagram. The lists were quite extensive, but the
diagrams were more limited than the first group. As the point of
the exercise was to give the students experience in a' technique
which they might find helpful in their study, the "quality,' of
the diagram is of little importance-

Several suggestions were made by the participants to improve the
effectiveness of the giercise. Some felt they were handicapped
by not having'their lecture notes with them, while those who did,
felt the strategy helped them revise their notes. One student
felt a whole class discussion would have been helpful. Several
expressed the need for a starting point, though at least one said
it was better not to be given much direction. The second group
reported that they had felt unsure of the task at first but when
they got going, they found it very helpful.

While the study appears to indicate that the Structure of Meaning
technique can be applied to programs in mathematics education in
pre-service courses, and does achieve positive results in that
the participants admit to being encouraged to think because of
it, there were still one or two who wanted others to do their,
thinking for them. This can be seen in this report:

"I think it would be a good idea to have you write what you
think the main aspects of problem solving are on the board
in case someone has the wrong idea."

A further group of subjects were asked, not only if they were
'willing to participate, but also-when they would be ready to
carry out the task involved. The task itself was only explained
briefly in the recruitment stage, but sufficient information Was
given to alert the subjects to the possible need for bringing
notes and any material they wished to refer,to. As it happened,
they felt that their notes were all they needed on the occasion,
though some did express their wish to follow up certain elements
that arose as a result of the activity.

(a) Probem Solving

The subjects who participated in the second Structure of Meaning
Activity were from two different'sources. The first group were a
small group of five secondary teachers who attended a five hour
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in- service workshop on problem solving organised by the

Mathematicil Association of New South Wales. During the

workshop, participants, twenty five in number, were given the

opportunity to actually work on problems of their choice in

groups, then reflect on the processes and strategies they had
used in solving their problems. "Input from three, speakers

included theoretical and practical ideas both for solving

problems and for implementing a problem solving approach in the

classroom. The five who volunteered to contribute a structure of

meaning diagram were all secondary teachers though there were a

few primary teachers present.

Again, comments by this small group endorsed those made by .

participants in the previous study.

(b) Geometry_

Another group of subjects to use the structure of meaning

technique was taken from the third. year students at 'Nepean

College of Advanced Education. These students were within a week

of completing their sequence of three/mathematics course units

and during the last of these had been concentrating on problem

solving, geometry and measurement. Thirteen subjects in this

study worked on geometry and twenty three on measurement.

In the geometry section, subjects were given a brief explanation

of the structure of meaning diagram, and an example. They were
then asked to listthe elements of geometry which they considered
should be covered in Years K - 6 before putting them into their

diagram. It was interesting to note'that while most 'students

listed 'concepts or topics, a few listed general principles, such
as the importance of using environmental instances or. examples. .

As before, the diagrams varied considerably. There were three who

. used a central focus, e.g. shapes, while three others strung

ideas together in a sequential manner. The remaining subjects

drew diagrams which included some clusters, and some sequences.

The diagrams are a powerful evaluation of the process and, as

such, proVide very useful data for course developmg",4-.

Again, the comments of the participants in evaluating the

technique are most interesting..

"It is a good strategy for refreshing me with the knowledge

that my grasp of geometry is abysmal."

"This exercise is good for revision of the concepts and

their relationships to each other. It helps to bring
together concepts and in doing so how they can be studied."
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Subsequently, a small number of the subjects have indicated'that
they did in fact use the technique when preparing for their
examinations. One used it as a means of determining her weak
areas, the others as a means of structuring content.

(c) Measurement

The task relating to measurement was structured rather
differently from the geometry task. Subjects were presented with
a series of written situations and asked to extract from them the
basic principle they would need to remember when providing
measurement activities for children. These basic principles
dealt with conservation, developmental levels, the importance of
"hands-on" experiences, estimation and, the use of informal
measures. They were then asked to draw a structure of meaning
diagram using these basic principles.

The diagrams drawn indicated that the subjects saw measurement as
a series of basically' unrelated activities, and consequently the
activity proved to be a very good diagnostic instrument. The
insights 'gained by the 'writer, as a- result of the subjects'
diagrams enabled her tq prepare workshop activities to present
some structured ideas.

REPE2TORY GRID TECHNIQUE

The Repertory Grid is a means of providing subjects with,a way of
recording their understandings about some part of their
environment or thinking. Vile subject on this occasion was asked
to name a range of elements in teaching problem solving. These
elements were then written co. cards and the subject was presented
with three of them at a time and asked to decide which of the
three were the most alike. The subject was then asked to say why
they were alike and why the third unselected card was different.
In this way, poles of the construct under consideration were
established. Once the poles were established, the subject was
asked to rank all the other elements along that construct
continuum. The procedure was repeated using a different set of
three eleMents until all cf.them had been used.

At the conclusion of the process, the subjects were asked to
reflect on the process itself and write some comments about it.
They responded as follows:

"This tecnnique was good as it made me think more deeply
about what I would do when preparing activities for
Children. I think I tend to work the other way around, find
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an activity then think of a way to teach it. I don't think

I consciously plan it the way we just did it, but if I think
about it, it would probably be the best way."

"This has certainly made me think about words and how you

can write down what you think are two very different' ideas,
but when pointed out to you are similar. This can be of great

help when wording problems or even writing reports or

keeping records for various subjects. Has made me think

about what I have been doing with problem solving."

These comments seem to indicate that the technique is a useful

one in providing a means of recording thoughts and feelings. The

benefit possibly comes from the necessity of sifting carefully
through the similarities and differences involved. The drawback

is the length of time it takes to present the procedure

individually to each subject..

RETELLING

Thirty four subjects from the third year teacher education

program, participated in the Retelling activity in two groups of

seventeen subjects each. A statement concerning the use of

calculators in the primary school was introduced to the groups,

but, before they actually received it, they were asked to

predict, on the basis of the title alone, what it was likely to

beabOut. This tended to raise issues in their minds and enabled
them to state explicitly their existing knowledge or lack of it.

Thus it .became.a means of diagnosis. The subjects were told the

purpose" of theretelling, then given the paper to read. Two

purposes were suggested and the groups were told they could

'choose whichever appealed to them. The two purposes were, from

the viewpoint of a teacher, to convince the executive of the

school to buy a set o'1' calculators for the class, and to

convince an uneducated parent about the value of using a

calculator in mathematics,to develop --Concepts, etc. At this

stage, they were working in.pairs or a group of three. Having

read the paper, they were then to retell orally to each other the-

content and spirit of the paper-,--taking on the ,role they had

selected. Finally, they were asked to write their arguments in

whatever role they had assumed,' and to evaluate the process in

terms of its potential for assessment and learning.
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The evaluations of the procedure indicated that 'the students,

found it very helpful in sorting out their ideas and coming to a
position about the use of calculators in the primary school. h.

sample of the subjects' comments follows:

"The practical activity showed that children can be

motivated to do maths and that maths can be fun.

Role playing the teacher,. the executive teacher, and the

innumerate mother, gave an interesting perspective on the

use of calculators. It made us (me) think of the practical
advantages of children using calculators and also
necessitated a framing of.my own attitude.

There is much more to, and advantages of, using

calculators than I thought.

Role playing was much more relevant than straight exposition
on their use.. I had to empathise with the teacher, child,

mother and executive."

"As a parent, I have myself' questioned the use of

calculators. However, the exercise we did yesterday made me
think about the potential of calculatori and having seen

young children play with them, I know that they hold a great,
deal of fascination for children. The exercise put me in a

situation I may, well be in one day as a teacher and helped
me to order my thoughts and develop an opinion."

ACTION RESEARCH IN REFLECTION

This study of reflection in action calls for further reflection.
Further reflection is needed to improve the effectiveness of the

implementation of the strategy used. It is also needed to assess
or evaluate the effectiveness of the strategy and the reflection,
and to plan for further stimuli to promote reflection. In this,

reflection ceases to be a purely individual activity and becomes
a social act.

The three techniques considered all halie'a value in matheMaticg.

education There is, as yet, insufficient evidence to claim that
they are all equally valuable for all branches of mathematics.
Many variations are possible, so it could be that they can all be

adapted to suit the subject matter. This in itself would be an

effective reflectional procedure. If ways of introducing, these

prOcedures, and others of a similar nature, could be found,

students at all levels would benefit from their use.'

Commitment to action is one of the outcomes of the reflective

processes. If students of mathematics are encouraged to reflect
on their experience, either in completing exercises or in solving
problems, learning will result.

- .
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GRAPHICAL LESSON PATTERNS AND THE PROCESS OF KNOWLEDGE
DEVELOPMENT IN THE MATHEMATICS CLASSROOM

HEINZ STEINBRING & RAINER BROMME
INSTITUTE FOR THE DIDACTICS OF MATHEMATICS (IDM)

UNIVERSITY OF BIELEFELD F.R. OF GERMANY

A method for analyzing mathematics teaching is presented
which permits to take into account the different levels. of
mathematical meaning within teacher-students interactions.
Conceptual structures of the development of mathematical
knowledge are visualized by means of graphical diagrams.

1. The construction of meaning in mathematics teaching
The meaning of mathematical knowledge cannot be established in

teaching processes by formal definitions of concepts alone; meaning is
developed, negotiated, changed and agreed upon in interaction between
teacher and students. On the one hand, the joint construction of meaning
depends on socio-communicative conditions of teaching processes (cf.
Bauersfeld 1982, Voigt 1984); on the other hand, the epistemological
nature of mathematical knowledge fundamentally influences the construc-
tion of meaning. Meaning is not immediately "included" in the symbolic
representations of knowledge; the meaning of a sign-system is contained
in its "intentions", its use or its reference to an "objective"
situation. Accordingly, the meaning of a mathematical concept is
conceived of as a relational-form which has to be established between
'sign' and 'object' in the epistemological triangle:

Object Sign

Concept

(cf. Mellin-Olsen 1987, Ogden/Richards 1923, Otte 1984, Steinbring 1985,
1988). Meaning as a relational-form, in particular, jneans that knowledge
realizes an objective relation between 'sign' and 'object', a relation
i5!hich simultaneously has to be constructed by the learning subject and
which has to be agreed upon with others in communication.

On the basis of this epistemological triangle, a schema of coding
was constructed for analyzing the deyelopment of mathematical knowledge
in the (verbal) interaction of teaching. The novel type of a graphical
visualization for the coded data (cf. the diagrams Al, A2, Bl, B2) in
form of an "epistemological cardiogram (ecg)" shows global patterns and
specific structures of knowledge developeePt6
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2. The coding of transcribed lessons
From a sample of 26 teachers, two are chosen (teachers A and B) who

showed significant differences with regard to individual variables of
the quality of teaching in lesson observation (for further details see
Bromme/Steinbring 1987). For each of these teachers, two transcribed
lessons (in the 6th form) introducing stochastics are analyzed. Accor-
ding to the epistemological triangle, the statements of students and
teacher referring to the mathematical content have been coded in the
following way: The contributions are coded as 'object' (abbr. 0), when
they only contain aspects of a given problem-situation; when only
aspects of the mathematical caculus or model are involved, the contribu-
tions are coded as 'sign' (abbr. S). Statements are interpreted as
belonging to the level of 'concept', if they simultaneously contain
elements of 'object' and of 'sign' in the shape of relations, and they
are coded as 'relation' (abbr. R) accordingly. (A fourth category
represented statements which could not be related to the other three,
but referred indirectly to the mathematical content; all four categories
were distinguished according to 'teacher explanation', 'teacher ques-
tion' and 'student statement', giving a total of 12 different catego-
ries. -In the following only the three "main" categories 'object' (0),
'relation' (R) and 'sign' (S) will be discussed.)

The basis of coding was an epistemological analysis of the
mathematical tasks presented in the lessons which led to a differentia-
tion between the level of 'object' and 'sign/model' with regard to the
particular lesson. Two external coders performed. the technical coding of
the transcribed statements independently. The transcripts were divided
into time intervals of 2 minutes before; statements were subdivided into
semantic units - if necessary. Every semantic unit- was coded according
to the given coding schema; by means of a computer program, the lists of
coded data were translated into graphical diagrams (see for instance
Al): Every black beam represents a contribution (of the teacher or of a
student) on the respective level of meaning; beams drawn through all
three levels express the presentation of mathematical tasks. (For more
details, particularly concerning the reliability of coding and the
graphical representation of all 12 categories see Bromme/Steinbring
1987).
3. The mathematical topic of the lessons

The "complementarity of mathematical concepts" fundamentally
inherent in probability as simultaneously empirical and theoretical
conceptual aspects (probability as relative frequency and as relative
portion) causes, even in the teaching of elementary stochastics, a
distinction between simple models of probabilistic aspects (for instance
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in form of "ideal" random generators as the ideal coin or the ideal die,
etc.) and intended real random phenomena (as for instance produced by
games with dice or other random mechanisms). The complementaristic
interplay between 'model' and 'situation' (cf. Dorf ler 1986) is very
typical for probability theory, but is basically a fundamental epistemo-
logical quality of every mathematical concept. It is the basis for
characterizing mathematical knowledge as relations in the epistemo-
logical triangle, which serves as a conceptual means for coding the
knowledge interactively negotiated in the classroom.

With regard to the four lessons concerned with elementary
probability, the study describes how the meaning of knowledge develops
in the interaction between teacher and students. The general topic of
these four lessons is the introduction of the representational concept
of "tree diagram" and its initial interpretative use. The situation used
to begin the introduction for both teachers is a task describing a
little boy who wants to arck from his home to different playgrounds
(soccer field, playground, 'swimming pool). At the crossings of his
paths, the boy, cannot decide which direction to follow, and he has the
idea of leaving his choice entirely to, chance by tossing a coin. If
tails appear, he takes, the path to the left, otherwise, he takes the
path to the right. In this imagined real context, a tree diagram of two
degrees must be elaborated as a "decision" diagram for analyzing this
situation. The contrast between path-diagram and tree or decision-
diagram expresses in an exemplary way the complementarity of representa-
tional and situational aspects of mathematical knowledge. Furthermore,
the establishment of a relation between the path diagram and the
decision diagram became a severe didactical problem which caused great
difficulties of understanding for many students. In the lessons of
teacher A, the tree diagram was treated and investigated in an
experimental manner, i. e. by "simulating" the situation several times
with coin experiments and by noting and discussing observed data. In the
lessons of teacher B, the understanding of the tree diagram was mainly
supported by some kind of terminological codification of paths and
crossings, and by the construction of a schematized diagram (which
should serve to count ideal numbers for determing the probabilities).
4. The graphical representations of the lessons

With regard to the differences between the lessons of teacher A
and teacher B, the question is how the level of 'relationship' develops
in the graphical lesson patterns. There, the differences in the
graphical patterns become immediately salient. In teacher A's lessons,
the relational.. is of almost equal rank with the other two levels;
for teacher B, however, this level has a subordinate position (cf. the
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diagrams Al, A2, Bl, B2). This visual impression is created by the
larger number of contributions and by the clearer structurization of the
contributions of the middle - relational - level in case of teacher A.
Teacher B, in contrast, treats this level far less than the other two (a
fact proved by counting them out; 28%, resp. 37% of contributions on the
relational level in the lessons of teacher A as opposed to 14% of
contributions in the lessons of teacher B). Besides, it is seen that
the relational level increases over time in case of teacher A. Teacher
A's first lesson, in particular, clearly shows this gradual focussing on
the relational level; in the second lesson, a homogeneously high
proportion on the relational level is attained even earlier.

In contrast, the graphical lesson pattern of teacher B's lessons
gives the impression that the relational level is never truly stabi-
lized. During the first lesson (B1), the 'sign' reap. 'model' level
predominates, while the level of 'object' seems to prevail as the second
half of the lesson begins. In the second lesson (B2), it is evident that
teaching switches back and forth between the 'object' level and tlia
'sign' level, and without any recognizable systematical integration of
the relational level. Considering the graphical lesson patterns shows
phenomenally that the two teachers handle the relational level quite
differently.
5. The particular significance of graphical diagrams

Graphical representations of numerical data are not simply
illustrative images offering a direct access to the data. Graphical
diagrams must not be conceived of as imperfect pictures' of teaching
phenomena or other real situations which still have to be completed.
They offer geometrical visual frames for exploring, explaining and
analyzing hidden relations and structures in the data; graphical
diagrams are theoretical means of exploration. "1. Graphical representa-
tions possess autonomous functions in processes of understanding, which
in general cannot be substituted by other means. 2. Graphical represen-
tations are genuine cognitive means ... and do not belong only to the
sphere of communication... 3. Graphical representations are explorative
means. ... It is possible' to operate with theM formally relatively
independent of references ... to contribute in this way to an investiga-
tion of unknown facts." (Biehler 1985, p. 70)

In the case' of statistical data, this theoretical and explorative
interpretation of graphical diagrams is particularly necessary. Here one
has to take into account that the given set of statistical data is only
a "representative" of a variety of "similarly" structured data. For
discovering in the concrete and individual case of a fixed set of data,
some general strucures and tendencies, graphical means of representation

269
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are extremely helpful if used in this theoretical and exploratory sense.
The variation of graphical visualizations and the operation on graphical
diagrams help discover general underlying structures which are inherent
in the concrete individual case of observation.

The different exploratory functions of graphical lesson patterns,
as developed for the analysis of knowledge development in the classroom,
refer to different levels of investigation:

global patterns of development and types of structures in the
course of teaching

- local detailed structures and patterns of mutual effects of
the interactions in the teaching process
the separation of data types in contrasting patterns according
to different characteristics of the real phenomena

6. An example: The separation of data types
The segregation of teacher's statements and shit) of students'

statements is -an important "graphical operation" belonging to, the
separation of Aata types into contrasting group es in order to construct
different graphical lesson pattacps for the same lesson. The separations
of the second lesson of teachei A (A2) and of teacher B (B2) as well,
show in an exemplary way the particular significance of graphical
representations (see the gt:aphical lesson patterns A2T, A2S, B2T, B2S).

The separated graphical lesson patterns of teacher A's lesson
(A2T, A2S) give the impression that the structure of knowledge develop-
ment related to the teacher's statements is quite in conformity with
the knowledge development caused by the students' statements; this
means, the general pattern generated by all non - separated statements
shows up more or less in each individual separated pattern., In contrast,
the separation of the data of teacher B's lesson (B2T, B2S) leads to two
differently structured graphical 'patterns. The pattern produced by the
students' statements reinforces the graphical structure observable in
the general pattern of this lesson. The switching back and forth between
the 'object' level and the 'sign' level, seems - to be paricularly
determined by the students', not by the ".teacher's contributions. They
students' contributions dominate the particular structure of the graphi.
cal pattern, not the teacher's statements.

The separation of the contributions of students and of sile

teacher produces, fdr the lesson of teacher A, two graphical patterns
with a similar structural course (also compared with the general
graphical pattern of this lesson); for the lepson of teacher B, the
separation produces two different graphical patterns among which the
students' pattern reinforces the structure of the general pattern of
this lesson. '2 7 0
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The comparison of separated data with the help of different
graphical, lesson patterns exemplarily explains the theoretical peculia-
rity of graphical diagrams. On the one hand, graphical visualizations
permit a concise representation of knowledge together with the possibi-
lity of discovering structures hidden in observed phenomena and situa-
Mons. The quick overview of the whole structure of a leeison's course
(by the general patterns and by the separated patterns as well) is an
important possibility to comprehend a teaching lesson in a specific
conceptual way, an achievement otherwise prevented by the great complex-
ity of concrete teaching processes. This does not mean that graphical
diagrams are simply reductions or incomplete models of real situations
- in this respect, every theoretical concept must contain reductions (or
abstractions) towards the complexity of concrete phenomena. It is
important that graphical diagrams are theoretical means for recognizing
new relations and developing a new theoretical perspective on seemingly
known facts. With regard to this, the graphical lesson patterns offer a
new conceptual view on the problem of the development of mathematical
knowledge and its meaning in teaching/learning processes.
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LONGER-TERM CONCEPTUAL BENEFITS FROM USING

A COMPUTER IIN ALGEB A TEACHING

Michael Thomas & David Tall

Mathematics Education Research Contra

Univaraity of Warwick, U.K.

This paper provides evidence for the longer-term conceptual benefits

of a pre-formal algebra module Involving directed computer

programming, software and other practical activities designed to
promote a dynamic, view of NOW's. The results of the experiments
Indicate the value of this approach In improving early learners'
understanding of higher level algebraic concepts. Our hypothesis Is

that the improved conceptualisation of algebra resulting from the

computer paradigm, with its emphasis on mental imagery and a
global/holistic viewpoint, will lead to more versatile learning.

The Background

In a previous papei(Tall and Thomas, 1986) we described the value of a three week "dynamic

algebra" module designed to help 11 and 12 year-old algebra novices improve their conceptual

understanding of the use of letters in algebra. The activities include programming (in BASIC),

coupled with games involving the physical storage of a .number in a box drawn on card,

marked with a letter, and software which enables mathematical formulae to be evaluated for

given numerical values of the letters involved. This paper carries the work further with" two

experiments that test the nature of the learning and its longer term effects.

Theoretical Consideration

The formal approaches to the early learning of algebra have nearly always considered the topic

as a logical and analytical activity with very little, if any, emphasis on the visual and holistic

aspects of the subject. Many researchers, however, have identified the existence of two distinct

learning strategies, described variously as serialist/analytic and global/holistic respectively. The

essential characteristics distinguishing these two styles have been recorded (e.g. Bogen 1969),
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with the former seen as essentially an approach which breaks a task into parts which are then

studied step-by-step, in isolation, whereas the latter strategy encourages adoverall view which

sees tasks as a whole and relates sub-tasks to each other and the whole (Brumby, 1982,
p.244). Brumby's study suggests that only about 50% of pupils consistently use both
strategies, thus meriting the description of versatile learners. The advantages of versatile

thought in mathematics are described by Scott-Hodgetts :

Versatile learners are more likely to be successful in mathematics at the higher
levels where the ability to switch ohe's viewpoint of a problem from a local
analytical one to a global one, in order to be able to place the details as part of a
structured whole, is of vital importance. ...whilst holists are busy speculating
about relationships, and discovering the connections between initially disjoint
areas of mathematics, It may not even occur to serialists to begin to look for such
links. [Scott-Hodgetts,1986, page 73]

These observations on learning styles correlate well with a number of physiological studies

which indicate that the mind functions in two fundamentally differefit ways that are
complementary but closely linked (see, for example, Sperry et al 1969, Sperry 1974, Popper &

Eccles 1977). The model of the activity of the mind suggested by these studies is a unified

system of two qualitatively different processors, linked by a rapid flow of data and controlled

by a control unit. The one processor, the familiar one, is a sequential processor, considered to

be located in the major, left hemisphere of the brain, responsible for logical, linguistic and
mathematical activities. The other processor, in the minor, right hemisphere, is a fast parallel

processor, responsible for visual and mental imagery, capable of simultaneously processing

large quantities of data The two processors are linked physically via the corpus collosum, and

controlled by a unit located in the left hemisphere. This image of the two interlinked systems,

one sequential, one parallel, is a powerful metaphor for different aspects of mathematical

thinking. Those activities which encourage a global, integrative view of mathematics, may be

considered to encourage the metaphorical right brain. Our aim is to integrate the work of the

two processors, complementing logical, sequential deduction with an overall view, and we

shall use the term cognitive integration to denote such an approach; with the production of a

versatile learner as its goal (see Thomas 1988 for further details).

The approach to the curriculum described here uses software that is designed to aid the learner.

to develop in a versatile manner. In particular, the software provides an environment which has

the potential to enable the user to grasp a gestalt for a whole concept at an intuitive level. It is

designed to enable the user to manipulate examples of a specific mathematical concept or a

related system of concepts. Such programs are called generic organisers (Tall, 1986). They are

intended to aid the learner in the abstraction of the More general concept embodied by the

examples, through being directed towards the generic properties of the examples and
differentiating them from non-generic properties by considering nonexamples. This
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abstraction is a dynamic process. Attributes of the concept are first seen in a single exemplar,

the concept itself being successively expanded and refined by looking at a succession of

exemplars.

The generic organiser in the algebra work is the "maths machine" which allows input of

algebraic formulae in standard mathematical notation and evaluates the formulae for numerical

values of the variables. The student may see examples of the notation in action, for example

2+3*4 evaluates to 2+12=14, and not to 5 *4=20s. Although this contravenes experience using

a calculator, the program acts in a reasonable and predictable manner, making it possible to

discuss the meaning of an expression such as 2+3a and to invite prediction of how it evaluates

for a numerical value of a. In this way the pupils may gain a coherent concept linage for the

manner in which algebraic notation works.

The teacher is a vital agent in this process, acting as a mentor in guiding the pupils to see the

generic properties of examples, demonstrating the use of the generic organiser, and
encouraging the pupils to explore the software, both in a directed manner to gain insight into

specific aspects; and also in free exploration to fill out their own personal conceptions. This

mode of teaching is called the enhanced Socratic Mode. It is an extension of me Socratic mode

where the teacher discusses ideas with the pupil and draws out the pupil's conceptions (Tall,

1986). Unlike the original Socratic dialogue, however, the teacher does not simply elicit
confirming responses from the pupil. After leading a discussion on the new ideas to point the

pupils towards the salient features, the teacher then encourages the pupils to use exactly the

same software for their own investigations.

The generic organiser provides an external representation of the abstract mathematical concepts

which acts in a cybernetic manner, responding in a pre-programmed way to any input by the

user, enabling both teacher and pupil to conjecture what will happen if a certain sequence of

operations is set in motion, and then to carry out the sequence to see if the prediction is correct.

The computer provides an ideal medium for manipulating visual images, acting as a model for

the mental manipulation of mathematical concepts necessary for versatility. Traditional
approaches which start with paper and pencil exercises in manipulating symbols can lead to a

narrow symbolic interpretation. Generic organisers on the computer offer anchoring concepts

on which concepts`of higher order may be built, enabling them to be manipulated mentally in a

powerful manner. They can also encourage the development of holistic thinking patterns, with

links to sequential, deductive thinking, which may be of benefit in leading to better overall

performance in mathematics.
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LoskrzatraLikosili§jaAligabis

In order to test the long-term effects of the "dynamic algebra module", a follow-up study was

carried out over one year after the initial experiment previously described (Thomas and Tall,

1986). By this time the children were now 13 years old and had transferred to other schools

where they had completed a year of secondary education. Eleven of the matched pairs attended

the same secondary school and were put into corresponding mathematics sets, so that during

their first year (aged 12/13) they received equivalent teaching in algebra. At the end of the year

they were all given the algebra test used in the original study. A summary of the results and a

comparison with their previous results are given in table 1. This demonstrates that, more than

one year after their work on basic concepts of algebra in a computer environment, they were

still performing significantly better.

Test Experlrn.
Mean

(max-79)

Control
Mean

(max -79)

Mean
Diff.

S.D. N t df

Post test 32.55 19.98 12.57 10.61 21 5.30 20 <0.0005
Delayed
Post-test 34.70 25.73 8.47 11.81 20 3.13 19 <0.005
one year
later 44.10 37.40 6.70 7.76 10 2.59 9 <0.025

Takla 1

This lends strong support to the idea that the introduction of a module of work, such as the

dynamic algebra package, with its emphasis on conceptualization and use of mental images

rather than skill can provide significant long-term conceptual benefits.

Skills and Higher Ortu Conce.pla

A second teaching experiment was held in which a dynamic algebra approach using the

computer was compared with more traditional teaching methods. The subjects of this second

experiment were 12/13 year old children id six mixed ability classes in the first year of a 12-

plus entry comprehensive school. The school is divided into two halls with children
apportioned to provide identical profiles of pupil ability, but the teaching is done by a unified

team of teachers, allowing direct comparisons of different teaching methods. On the basis of an

algebra pre-test it was posSible to organise 57 matched pairs covering the, full ability range in

the classes.

In the first stage 64 .the companion the experimental group used the dynamic algebra module

during their normal mathematics period% using computers hi small groups of two or three over
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a three week period during the autumn term. At the same time the control group used a

traditional skill-based module employed in the school over some years, covering basic

simplification of expressions and elementary equation solving in oneunknown. Immediately

following the work they were given a post-test containing the same questions as the pre-test.

The results (given later in table 5) superficially showed that there was no significant difference

in overall performance, but analysis of individual questions presented an interesting picture. On

skill-based questions related to the content of the traditional module, the control group

performed significantly better, whilst on questions traditionally considered to be conceptually

more demanding, the experimental group performed better. Table 2 shows typical skill-based

questions and the better performance of the control group:

Question Experimental
%

Control

Multiply 3c by 5 14 41 3.07 <0.005

Simplify 3a+4b+2a 50 - 73 2.46 <0.01

Simplify 3b-b+2a 29 61 3.36 <0.0005

Simplify 3a+4+a 38 78 1.60 n.s.

G pgsaws ancl.

labial

Table 3 shows the better performance of the experimental group on questions considered to be

more demanding in a traditional approach, requiring a higher level of understanding, including

the concept of a letter as a generalized number or variable:

Question Experimental
% .

Control
%

z

For what values of a
is a+3).7 ? 31 12 2.33 <0.01
For what values of a
is6>a+3? 22 6 . . 2.33 <0.01

a+b=b, always, never,
sometimes ... when? 31 17 1.65 <0.05

M+P+N=N+M+R, always,
never, sometimes ... when? . 38 28 1.08

,
n.s.

Perimeter of rectangle D by 4 50 27 2.46 <0.025 .

Perimeter of rectangle 5 by F 50 29. 2.24 <0.025

Lamer of 2n and n +2 ? 7 0 1.91 <0.05

Table 3
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The differential effects of the two treatments could be considered as a manifestation of the skills

versus conceptual understanding dichotomy, in terms of the levels of understanding defined by

Ktichemann [1981]. His level 1 involves purely numerical skills or simple structures using

letters as objects, level 2 involves items of increased complexity but not letters as specific
unknowns. Level 3 requires an understanding of letters as specific unknowns; level 4 requires

an understanding of letters as generalized numbers or variables. It is important to understood

that these levels were not intended to be a hierarchy but rather a description of children's
functional ability. However, it is only at levels 3 and 4 that children are really involved in

algebraic thinking rather than arithmetic and few children (17% at age 13) attain this level of

understanding. Table 2 shows that the control pupils outperform the experimental pupils at

levels 1 and 2, whilst table 3 shows that the experimental pupils outperform the control pupils

at the higher levels.

This suggests that there are differential effects from the two approaches in respect of surface

algebraic skills (in which the control students have a greater facility' at this stage) and deeper

conceptual understanding (in which the experimental students perform better). An alternative

(and, we suggest, more viable) explanation is that the traditional levels of difficulty depend on

the approach to the curriculum and may be altered by a new approach using the computer to

encourage versatile learning.

SAnzadermitkciasaakilLuangszungtaiwiLideas

In the summer. term, some sixth monats later, the pupils were all given the same traditional

revision course on their earlier algebra, without any use of the computer. Both groups were re

tested and a comparison of matched pairs was made again. Table 4 shows the pupils
performance on the test as a whole. On this occasion the experimental students now performed

significantly better than the control students.

Test Experim. Control Mean S.D. N t dt p
Mean Mean Dttf. (1 -tail)

(max.67) (max=67)

Post test 36.0 35.9 0.1 . 10.46 47 0.06 46 n.s.
Delayed
Post-test 42.1 39.3 2.76 8.91 46 2.08 45 <0.025

Table 4

In the conceptually demanding questions of the type mentioned in table 1, the experimental

students continued to maintain the& overall superiority (table 5).
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Test Experim.
Mean

(max.28)

Control
Mean

(max26)

Mean
DIP.

S.D N t df p
(144

Post test 9.28 7.77 1.50 4.81 48 2.14 47 <0.025
Delayed
Post-test 10.97 9.45 1.51 4.73 47 2.17 46 <0.025

labial

Meanwhile, on the skill-based questions, the experimental students marginally surpassed the

control students, although the difference was not statistically significant.

The effects of Gender

Although the researchers did not set out to look specifically at the relationship between
performance and gender, a factor analysis including ability and gender among its variables was

included. A random sample of girls and boys was taken and a comparison on pre-test and post-

test made. In the sample the girls performed less well than the boys on the pre-test, but made a

statistically significant improvement to perform better than the boys on the post-test. The

reasons for this are not altogether clear at this stage. It was certainly noticeablethat the more

able boys, with previous computer experience, were constantly showing their prowess at
making the computer print screensful of coloured characters, and some saw the elementary

activities as a little beneath their dignity. Meanwhile some of the girls had initial difficulties and

took the task extremely seriously, discussing the problem and helping each other in small

groups. Thus the experiment was unable to distinguish whether the difference was social or

cognitive.

Conclusions

The experiments provide evidence of a more versatile form of thinking related to the computer

experiences. Further this improved understanding of concepts usually considered to' be of a

higher level and difficult to attain by traditional methods, was shown to of a long-term nature.

There is also support for the hypothesis that the computer can be used in the enhanced Socratic

mode to provide experiences to encourage versatile learning through cognitive integration.
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THE ROL -OF AUDIOVISUALS IN MATHEMATICS TEACHYNG

TOMPA, KLARA: National Centre for Educational Technology

Hungary

The use of a number of means characteriseSthe mathematics
classes. Objects which can be taken into one's hand or
their pictures can greatly promote the active partici-
pation of children in the process of problem solving
and concept formation. The functions of the symbols as'
defined by R.R. Skemp are very well realised by means
of the audio-visual media. ExplanAtion, understanding,
the promotion of the abstraction process and other
'symbol-functions' can be realised with the help of the
representational possibilities of slides, overhead trans-
parencies, films and videos.

The teaching of mathematics has greatly changed over the past

decades. The-basic reason for the change was in mathematics

itself, in the development of mathematics. The development

of the discipline of mathematics, its self-renewal made it so

effective that more and-more other fields of discipline apply

mathematics in ever newer ways /economics, linguistics, psycho-

logy, computer science, etc./. Application means two things:

the application of new fields of mathematics on the one hand,

and the application of a mathematical attitude, wa of thinkin

activity on the other. Nowadays all professions require speci-

alists who are familiar with the methods and attitude of mathe-

matics, what's more, who are able to apply mathematics as well.

So the most important task of the teaching of mathematics be-

side providing a certain amount of factual knowledge, is also

the shaping of the personality with the help of mathematics.

In order that mathematics should be built into the personali-

ty as a way of thinking and form of activity the pupil has to

face a large number of situations in which they can trace the

feel of mathematical kinds of activity, try them out themselves,

practise them and on the basis of several individual cases they

can formulate their characteristic features. So the process of
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the teaching and learning of mathematics has changed consider-

ably in a number of ways:

- In its contents and structure.

- Pupils do not only use paper and pencil in a class of mathe-

matics but a number of other things /especially in the lower

elementary forms /..Mathematical activities needed for concept

formation and problem solving are carried out by the children

with the help of objects taken into their hand or their pic-

. ture symbols.

- The behaviour of pupils during class has also changed. In-

stead of being a passive receiver he is now an active parti-

cipant, not only in his psycho-motoric manifestations but in

the field of cognitive processes as well.

- The teachers' behaviour in preparation for, and during the

class has changed as well, it has become richer. Beside the

offering of information new tasks are set for the-teacher, like

the organisation of the work of individual pupils and small

groups as well as the direction of this work, giving extra

jobs to the very fast ones and the very slow ones, etc.

This changed process of teaching and learning requires the more

unified design of the contents, the means, the methods, the

different activities of the teacher and the pupil.

The present paper deals only with one of the means of mobilis-

ing the pupils for active participation, i.e. audio-visual

aids and the opportunities offered by them.

What can audio-visual aids offer for the teaching of mathe-

matics?

Because of the nature of the subject .first of all the audio-

visual media , like slides, overhead transparencies,

films and videos can be used in the teaching of mathematics.

/I do not wish to deal with the ever growing role of the

computer and the extremely useful possibility of interactivity .. /
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We can have great expectations when we use visual aids because

mathematics uses visual symbols very comprehensively. R.R.

Skemp differentiates between ten different functions of sym-

bols, which are: communication, restration of information,

formation of new concepts, the facilitating of multiple class-

ification, explanation, understanding, the facilitating of the

representAtion of structures, the formation of routine skills,

the recollection and the understanding of bits of information.

/Skemp, 1975/

The above mentioned audio-visual media can very well realise

these functions of symbols.

It me show one by one what each of the visual media is capable

of doing in promotion of the teaching of mathematics.

SLIDES, SLIDE SERIES

Slides might be very different as far as their representation

technique is concerned, ranging from true, realistic coloured

pictures of objects to, simple linear drawings showing the out-

line of objects.

Looking at it from a different point: graphic slides prepared

with a clear representation method and showing aesthetic quali-

ties as well may greatly help convey information about things

which cannot be sensed by vision. Mathematics teaching can make

best use of such colourful graphic slides.They are the ones

which can make the visual symbols indispensable in various

fields of mathematics much more effidient.

We have prepared 405 coloured graphic slides to be used in the

mathematics classes of the lower primary grades /aged 6 to 10/

with the following expectations:

- The redundance of lengthy explanations and information giving

can be avoided or decreased with the help of the adequate

combination of mathematical and graphic symbols.

- The ready made slides which can be projected on the spotsave
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the energy and time of the teacher, which he can spend in

some useful other way.

- As the majority of the slides contain problems and tasks to

be solved, they can be used as "a visual collection of prob-

lems" to be used for teaching any new area of the teaching

material.

- The representation of the tasks individual use poseible, this

way, using individual slide-viewers the pupils can be given

individualised tasks.

- The simple, "aesthetic pictures in line with the taste of

the lower elementary age group help the pupils carry out real

mathematical activity. The graphiC representations might

also help visual training beside the teaching of mathematics.

Children generally like film projections and working with

slide viewers. All the same the application of these slides

is only effective if the pupils do the tasks and mathematical

activities that the slides tell them to'. And as the tasks re-

quire serious work the teacher has to decide very carefully

which slide to use, when and who to give it. to.

OVERHEAD.TRANSPARENCIES

Overhead projectors are the most widespread aids used in the

most various ways in Hungarian classrooms nowadays. This is

understandable because there are so many kinds of transparencies

possible. The one consisting of one page or several pages build-,

ing up the figure or the ones that can-be moved can all fulfil

a number of functions in the process of teaching in 'general

and also in teaching mathematics.

- Among the "one-page" transparencies great importance can be

given to the ones which can be used to help work in the class.

They usually ,contain some basic figure, network-and the teacher

and the pupils working together or separately prepare on it

some more complicated figure, having important details. show-
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ing important connections, relationships. Typical examples

are square grids, number lines with different units,

systems of axes, empty charts, Venn diagrams, auxiliary

grids and other,

- The transparencies consisting of several pages, the so called

building-up transparencies can also be used for multiple

functions. They can help prove mathematical theorems step

by step. The given bits of information may guide or promote

the thinking towards the possible solutions. In problem .

solving the pupils can check their solution by turning the

page with the solution onto the original task page.

- Common problem solving can also be helped by the teacher

with the.help of figures built up of several steps.

- Overhead transparencies containing movable parts can also be

of great use in the mathematics class. E.g. the understanding

of geometrical transformations, function transformations'

can be made much clearer,,much easier to understand.

FILMS, VIDEO RECORDINGS-

Films and videos as othei audio-visual media

have proved that they are capable of transferring true

knowledge and thus widening the range of experiences of pupils.

They do so because they are Capable of the following:

-.They can show processes which cannot be viewed in any other

way.

- They can widen the limits of human perCeption. With the

technique of speeding up or slowing down they might show

piocesses to the viewers which would otherwise be not -

;perceptible .for the humah eye. The possibility of reducing

and amplifying and other special techniques all open up-the

limits of the human eye and observation so as to be ableto

see phenomena not perceii/ed earlier.
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--Limitations of space and time can be overcome with the help

of films and videos. A possibility is opened up for the re-

cording and multiple viewing of rare phenomena which can

thus be shared with others.

-The application of animation and computer graphics in films

and videos makes it possible to picture things and phenomena

not perceivable visually.

- Film and video give the feeling of involvement and the ex-

perience of presence more than any other programs using

pictures for illustration.

Taking into account all these characteristic features of films

and videos it can be said that motion pictures on mathemati-

cal topics /especially from the field of geometry/ use anima-

tion and graphic techniques, because matnematics operates with

symbols on the level of abstraction first of all, although

its concepts are rooted in reality. With the motion of plain

and spatial figures hardly conceivable facts can be made visi-

ble-like the one that there is no shortest one among the chords

of a circle but there is a longest one.

Films are generally not prepared for individual learning, but

they are shown to the whole class. Their viewing must always

be prepared with great care, so that the pupils were able to

perform the mental processes the film asks them to. during

the viewing.

Slides, transparencies, films and videos can be used right in

the class thus promoting the teaching of mathematics. But on

the other hand there are means which exert their influence in

an indirect'way, like the mass media, radio and television

which might broadcast mathematical tasks and problems for the

children interested in the form of a competition. Videos may

have, other impacts on mthematics teaching. In teacher train-

ing students' micro-teaching can be recorded thus developing
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the efficiency of their own teaching. The efficiency of the

teaching and the performance of the Aitudents are,greatly in-

. fluenced by the teacher's. ability. of setting the problems,

his skill of asking questions.

HOW TO EDIT THE INFORMATION

It must be.clear for those who develop audio - visual. media

that learning from a picture is.a different process from learn-.

ing frOm a book by reading. Reading is.a linear process of

putting the words one after the other, building up the meaning
.

of a sentence. As opposed to this the information contained in

a picture is present at the same time and it depends on the

viewer how, in what order he comprehends the information

gained from each part. Besides, the motion picture might dis-.

appear too fast, before its essence could be understood.

Taking all this'into account visual information must be edited

very carefully so that it had the desired result in learning.

There are some practical bits of advice to be followed during

the technical realisation of the pictures:

- Text and figure shol.support or complete each other but

they.should never repeat what the other sale.

Visual elements and inscriptions shoud be clearly organised

so as to convey an aesthetis message as well.

Irrelevant details should be omitted, pictures should not

be overcrowded.

- Types and sizes of letters and numbers should be carefully

conceived and not varied too often.

- In order to avoid-false impressions the pictures should con-

tain some points of reference about the size of figures.

- Taking into consideration one of the important elements of

human learning, i.e. selective perception all.must be done

to direct the attention to the important features-+
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We have to underline the most important details./Arrows,

coloured plots, numbering, lettering, frames, animation,

repetition, slowing down, speeding up, electronic light

effects, etc./.

Carefully edited witty audio-visual media can raise the

attention and keep it awake.; so they are very effective aids

in the teaching of mathematics.

+ /Gagne, 1980/
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SPECIFYING THE MULTIPLIER EFFECT ON CHILDREN'S SOLUTIONS

OF SIMPLE MULTIPLICATION WORD PROBLEMS

L. Verschaffel, E. De Corte & V. Van Coillie

Center for Instructional Psychology

University of Leuven, Belgium

Abstract

One important finding from recent research on multiplication
word problems is that children's performances are strongly
affected by the nature of the multiplier (whether it is an
integer, decimal larger than 1 or a decimal smaller than 1).
On the other hand, the size of the multiplicand has little or
no effect of problem difficulty. The aim of the present study

was to collect empirical data concerning this "type of .

multiplier" effect in combination with two additional task
"variables which have not yet been seriously addressed in
previous research, namely (1) the symmetrical/asymmetrical
character of the problem structure and (2) the mode of
response (choice of operation versus free response mode).

While the data of the present study provide additional
evidence for the aboire-mentioned effect-of-multiplier
hypothesis, they also show that the two other task variables
also strongly influence children's difficulties with
multiplication problems.

INTRODUCTION

During the last years researchers have started to analyie pupils'

solution skills and processes with respect to multiplicative word
-

problems (for an overview see Bell, Grimison, Greer & Mangan, 1987). A

robust finding from these studies is that children's difficulty in -

choosing the correct operation.depends strongly on the nature of the

multiplier. For example, Mangan (1986) found that children performed

signifi,antly better on problems with an integer as multiplier than when

the multiplier was a decimal larger-than 11; problems with a multiplier

smaller than 1 were still much more difficult. (The most common error on

the latter problem type was dividing instead of multiplying the two
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given numbers.) On the other hand, the size of the multiplicand had no

significant effect on problem difficulty.

Fischbein, Deri, hello and Marino (1985) have developed the following

theoretical account for these findings: each'arithmetical operation

remains linked to an implicit and primitive "intuitive model", which

mediates the-identification of the arithmetic operation needed, to solve

a word problem. AcCording to the authors, the primitive model associated

with multiplication is "repeated addition ", in which a number of

collections of the same size are put together. A first consequence of

this "repeated addition" model is that, while the multiplicand can be

any positive number, the multiplier must be an integer. A second

implication is that multiplication necessarily results in a number that

is bigger than the multiplicand. When these constraints of the

Underlying model are incongruent with the numerical data given in the

problem, the choice of an inadequate operation may be the result

(E.1.schbein ut al., 1985). While the available experimental and

obserwitional data concerning the effect of number type are consistent

with Fischbein et al.'s (1985) theory, there still remain several

questions requiring further investigation.

First - with the exception of Mangan's recent study (1986).- the

evidence on the effects of the type of multiplier on the choice of

operation (regardless the nature of the multiplicand) is not convincing,

because it is based on comparisons betWeen problems that differ also in

several aspects other than the nature of the numbers (Bell et al.,

1987). Consequently, a first objective of the present study was to

collect additional data about the effects of type of multiplier and type,

of multiplicand in a more carefully designed way.

Second, the word problems included in previous investigations always

had asymmetrical structures. This means that the two quantities

multiplied play psychologically-a different role in the problem

situation, and are therefore non - interchangeable. This raises the

question whether the type of the given numbers affects also the solution

of symmetrical problems, in which the roles played by the quantities

multiplied are essentially equivalent

Third, in most previous studies pupils were not asked to answer the

problems; but to indicate which formal arithmetic operation would yield

the correct solution. - However, selecting a formal arithmetic operation

with the two given-numbers, is not the only way in which a one-step wore

problem can be solved. Besides, there area lot of informal solution

strategies that may lead to the correct answer. Therefore, one could ask
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whether the number of wrong-operation errors would be as large when the

item format does not force children to'choose'a formal arithmetic .

operation, but allows them to rely on other, more informal solution

strategies.

METHOD

A paper-and-pencil test consisting of 24 one-step problems was

constructed. The test contained 16 multiplication problems; the

remaining eight items were included to reduce the likelihood of

stereotyped, mindless response strategies on the 16 target problems.

Half of the multiplication problems had an asymmetrical structure (rate

problems like "One litre of milk costs x francs; someone buys y litres;

how much does he have to pay?"); the other half were symmetrical (area

problems like "If the length is x meters and the breadth is .y meters,

what is the area?"). All eight symmetrical and asymmetrical problems

differed with respect to the type of the multiplier or the multiplican(

(either an integer, a decimal larger than 1, or a decimal smaller than

1). This 24-items test was given to a group of 116 sixth-graders twice:

once in a choice-of-operation form and once in a free-response form.

Afterwards an analysis of variance (with a randomized block factorial

design) was performed with the following four task characteristics as

independent variables: (1) type of multiplier: an integer, a decimal

larger than 1 or a decimal smaller than 1; (2) type of multiplicand: an

integer, a decimal larger than 1 or a decimal smaller than 1; (3)

problem structure: symmetrical or asymmetrical; (4) response mode:

choice of opeiation or free response. In the multipfe-choice format, the

dependent variable was the number of children that indicated the correct

operation; in the free-response format it was the sum of the correct

answers and the technical (or computational) errors, the underlying idea

being that answers resulting in technical errors nevertheless reflect

correct thinking about the problem as is shown by the appropriate

solution strategy chosen. Main and interaction effects significant at

the 5 % level were further analyzed using Duncan's multiple range test

(p (.05).
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RESULTS

Main effects

The results of the analysis of variance revealea a significant main

effect for the independent variable type of multiplier (F (2,3565) =

237.75, p ( .001). A supplemental analysis (using Duncan's test) showed

that the problems with an integer as multiplier were significantly

easier than those where the multiplier is a decimal larger than 1, and

that the latter were easier than problems with a multiplier smaller than

1. The proportion of appropriate solution strategies for these three

problem types was .94, .89 and .71 respectively. On the contrary, no

main effect was found for the independent variable type of multiplicand:

the proportion of correct strategy choicesforimultiplicand as integer,

decimal larger than 1, and decimal smaller than 1 was .86, .83 and .82

respectively. To summarize, our results confirm the hypothesis that the

type of multiplier strongly influences children's choice of an

appropriate:solution strategy, while the nature of the Multiplicand has

no significant effect on their choices.

-The analysis of variance also showed a main effect for the third

independent variable, namely'problem structure (F (1,3565) = 55.69, p(

.001). The supplemental test revealed that the symmetrical problems

elicited a larger proportion of correct strategies (.88) than the

asymmetrical ones (.80). However, in this study symMetrical as well as

asymmetrical problems were represented only by one single subtype..

(respectively "rate" and "area"). It therefore would be premature to

'conclude that ingeneral symmetrical problems are easier than

asymmetrical ones.

Finally, there was no significant difference between the proportion

of correct operations for the problems presented in the two response

modes, namely multiple.choice (.83) and free response (.85).

Interaction effects

A main goal of the present study was to analyze how two additional task

characteristics, namely problem structure and response mode, affect the

influence of, the type of 'multiplier on the proportion of correct

strategy choices.

First, the analysis of variance, showed a significant disordihal type

of multiplier by problem tirtiWe interaction (F, (2,3565) = 295.72, p<.

Ji
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.001). The supplemental Duncan test, based on 'p ( .05, revealed that for

the asymmetrical structure, problems with an integer as multiplier were

significantly easier than those with a decimal larger than 1 as

multiplier, and that the latter were easier than those in which the

multiplier was a decimal smaller than 1 (see Table 1); this is entirely

in line with the overall results reported in the previous section. For

the symmetrical structures, on the other hand, there was much less

difference between the proportions of correct strategy choices for the

three distinct "type of multiplier" problems. Moreover, although here

too significant differencps were found, they were not in the expected

direction: "decimal smaller than 1" and "integer" problems were both

significantly easier than "decimal larger than 1" problems, but did not

differ mutually (see Table 1). Furthermore, a comparison between the

, proportion of correct operations in the context of a symmetrical and

asymmetrical structure for each of the three types of multiplier,

revealed that integer and decimal larger than 1 problems were easier

when embedded in an asymmetrical structure; for problems with a decimal

smaller than 1, on the other hand, the symmetrical structure was the

easiest. All three differences were significant.

Table 1. Proportion of appropriate solution strategies for the distinct

"type of multiplier" problems in the two problem structures

Type of multiplier Problem structure

Asymmetrical Symmetrical

Integer .99 .89

Decimal larger than 1 .93 .84

Decimal smaller than 1 .52 .90

A significant disordinalltype of multiplier by response mode

interaction wassalso found SF (2,3565) = 53.28, p (.001). The Duncan

test revealed that in both respon'se modes, problems with an integer as

multiplier were significanify easir'thanthose with a decimal

:multiplier larger than 1, and that theslatter were in turn signifiCantly

easier'than-thoe having a decimal smaller than 1 as multiplier (see

Table 2). However, when we compar'ed the proportion of correct operations

in both response modes for,'each of these three types of multiplier, it

294
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was observed that "integer" and "decimal larger than 1" problems were

easier in the choice-of-operation than in the free-response condition,

whilst the reverse was true for problems having a decimal smaller than 1

as the multiplier. All three differences were significant.

Table 2. Proportion of appropriate solution strategies for the distinct

"type of multiplier" problems in the two response modes

Type of multiplier Response mode

Choice of operation Free response

Integer .97 .91

Decimal larger than 1 .91 .86

Decimal smaller than 1 .64 .78

DISCUSSION

Recent research on multiplication word problems has shown that problems

with an integer as multiplier are much easier than those with a decimal

multiplier larger than 1, and that problems with a multiplier smaller

than 1 are still more difficult. By contrast, the nature of the

multiplicand seemed to have only a marginal effect on problem

difficulty. Generally speaking, the results of the present study support

these findings. However, our results enable us to specify the

"multiplier effect hypothesis" in two respects: (1) the differential

effect of number type for the multiplier is only found in asymmetrical

problems, not in symmetrical ones, and (2) this differential effect is

much weaker in a free-response situation as compared to a forced-choice

formai--

The observed multiplier by problem structure interaction raises an

important question, namely what mechanisms might account for the absence

of a "type of multiplier" effect in our symmetric problems. In line with

with Fischbein et al.'s (1985) theory, one could argue that the

constraints of the "repeated addition" model do not affect negatively

the solution process of symmetrical problems with decimals, because

their symmetry does not require the problem solver. to attribute the role

of multiplicand' and multipliev.to,narticular numbers. But another
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explanation might_be that the representation of "area" problems is not

influenced by the "repeated addition" model, but rather by another

primitive model, such as the "rectangular pattern" model (with other

constraints imposed on the numbers that can, be used and their role in

the structure of the problem). A final plausible account for the absence

of the multiplier effect in our symmetrical problems is that pupils'

selection of the operation does not result from a mindful matching of

the "deep" understanding of the problem structure with a formal

arithmetical operation (mediated by a primitive model), but is simply

based on the direct and rather mindless application of a well-known

formula (area = length.X breadth), associated with the key word "area"

in the problem text.

The multiplier-response mode interaction is the second additional

finding of our study: the negative influence of the multiplier being a

decimal smaller than 1 was much weaker in the freelresponse than in the

multiple-choice format. Our collective paper-and-pencil tests did not

yield much information about the precise nature of the cognitive

processes in the free-response mode that led to the correct strategy

choice on problems with a multiplier smaller than 1. Previous work has

demonstrated that pupils can often solve correctly simple multiplication

problems with small integers using informal strategies without

apparently being aware that the solution could be obtained by

multiplying the two given numbers. However, the specific question raised

by our data is: which solution paths -other than multiplying the two

liven numbers - can lead to the solution of a problem in which the

multiplier is a decimal smaller than 1?

In view of answering the remaining questions we intend to collect in

our future work more systematically data on children's solution

processes while solving different types of multiplication problems using

# individual interviews and eye-movement registration as the main

data- gathering techniques.
-

To conclude, whilst our data about the interaction effects of type of

multiplier with problem structure and response mode are not necessarily

inconsistent with Fischbein et al.'s (1985)iheory, they suggest

nevertheless that we may have to search for a more detailed and more

comprehensive theory, based on the principle that the selection of an

appropriate solution strategy is-affected by a large number of factors

competing for attention and interacting in complex ways (see also Bell

et al., 1987). '196
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Is There Any Relation between Division and Multiplication?

Elementary Teachers' Ideas about Division

Shlomo vinner & Liora'Linchevski
Israel Science Teaching Center
Hebrew University, Jerusalem

Abstract
Some aspects of division with whole numbers and with fractions were

examined in 309 elementary teachers. and preservice teachers. One of the
main questions was whether these teachers have any kind of formel
approach to .division or they only have concrete models for it as the
quotative and the partitive divisions. we also tried to expose these
models 'by direct methods and not by indirect methods used in previous..
studies (Fischbein et al., 1985 and others). In addition to well known
results as "multiplication makes bigger and division makes smaller" we
also found the beliefs that multiplication by a fraction makes smaller
and division by a fraction makes bigger. About 64% failed to point at
the relation between division and multiplication when asked about in a
particular question.

Several stuaies have been done on Children's ideas about

multiplication and division (Bell et al., 1981: Hart, 1981: Fischbein et

al.. 19851 and also on preservice teachers (Tirosh et al., 1988: Tirosh

et 'al., 19871. The hypothesis was that certain models for the

multiplication and division imply certain ideas about these operations.

The aim of this study is to extend the above studies in two

dimensions. 1. We try to investigate the models for division and the

ideas about multiplication and division directly and not in an indirect

, way as in the above studies. This we do by asking questions that

stimulate the respondents to speak directly about their models and

ideas. 2. About 3/4 of our study population were inservice elementary

teachers and about 1/4 were preservice elementary teachers whereas the

former studies examined either children men et al., 1981: Fischbein et

al.. 1885: 490 Hart, 19811 or preservice elementary teachers (Tirosh et

al., 1988. 1987).

Together with the view that multiplication makes bigger there exists

a belief that multiplying by a fraction makes smaller. We examined how

common this view is in teachers. We dealt also with the problem of

division by zero as part of the models for division. We assumed that

this problem could help us to determine whether the teachers have

concrete models for division or formal models, as implicitly assumed by

Fischbein(1985). The Problem of.division Oy'zero is connected with the'

problem of the relation between multiplication'and division, a problem

with which we also deal in our study.

REST COPY AVAILABLE
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M e t h o dINIMINEN
Questionnaire

In Order to create a questionnaire we interviewed several teachers.

The interviews led us to form the following questions:

1. In an in-service teacher training'course, the following. question

was posedto the supervisor: Is it possible to explain division in

a mathematical way without telling stories about dividing cakes to

children or similar stories? For instance, what is 381 : 84 ?

What would you tell this teacher if you were the supervisor?

2. The operation 15 : 3 or even : 15 can be explained by cakes

:divided to children. Does the operation have a similar

meaning or is it4qnly a formal operation?

Given 18:: 3, is this a partitive division or a quotative division?

4. How much is 5 0 ? Please, :explain your answer!

p. A student claimed that any number divided by itself makes 1.

Therefore, also 0 : 0 . 1. .What is your reaction?

6. Which of the following is the most suitable for demohstrating

that 41 :'3 . 1i ?

a) 3 x.11

(b) 9 : 41.. 2

(c) 11 1i 1a = 41

Cd1 41 11 - li - li = 0

( e ) 1.fx 3 = 41

7. In eacn of the following pairs of ux&ercises, circle the one

which gives a greater result. Please, explain your answer!

I (a) 8 x 4 (b) : 4

II (a) 8 x 0.4 (b) B : 0.4

III (a) 0.8 x 0.4 (P) 0.8 : 0.4

IV Cal. 0.8 x 4 (b) 0.8 : 4

(Parts I-III of this question were taken from Brown. 1981,

who examined 12-15 year old students. We added part IV to

them in order to complete the structure,)

8. How will you explain to a student which of the symbols: < , >

should be written between the two.numerical expressions without

caorv1132...capaulatjaw2 Please, explain'yoUr answer!....

x . 3 .3
3 L

3. 4 4 3
III 8 x.7 . . . 8 : 7

9. A rectangle whose area is 1/3 cm= is given. The length of one of

its sides is 3/5 cm. What is the length of the adjacent side?

299
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Figure 1

(1/3)cms

(This question was given only to half of the sample. It was taken

from Hart, 1981. The other half of the sample got Question 10 for

the sake of comparison.)

10. A rectangle whose area is 1/3 cm° is given. The length of one of

its sides is 5 cm. What is the length of the other side?

Figure 2

(1/3)cm,

The reader can see that Questions 1 6 are related to-'the models. of

division and Questions 7-10 are 'related to the views about

multiplication and division possibly or partly implied by these models.

1.1121U1
The above questionnaire was distributed to 237 teachers and 72 pre-

service teachers. 54 teachers out of ''the 237 had the official title of

Mathematics coordinators In .their schools. These are teachers who have

more interest in mathematics than the average teacher and also underwent

some in-service matnematical training. In the result section they will

be referred to as Math. coordinators while the other teachers will OP

referred to as teachers.

Results
The answers of the respondents were analysed and classified to some

main categories. Questions 1-5 were suppOsed to expose the models of

the respondents for the division operation. More precisely, there was

an attempt in tne questions to direct the respondents toward the formal

approach. Formal approach can be understood in two ways: 1. Not

concrete: namely:: noreference to quotative or partative division. 2.

In addition to 1, conceiving the division as the inverse operation of

multiplication. Hence in Questions 1-5, the formal approach and the

concrete models (partitive and quotative divisions) play a central role.

There are special categories in some of the questions, resulting from

the. special situations in these questions. The informatioh is given in

Table 1.

3 0 0



628

Table 1
Models for Division

Distribution of answers (in percentages/ to Clues. 1-5 in the three groups.
T-teachers041831,P-preservice teacners(N.72) ,A-Math.coordinatorsth.541

Category

Question

Fuzee Partitive
only

3uatative
oily

Partitive
or

Quatative

0 Cate cry S ecei ic
to tne Cuestion

(see celowl .

No 4nswer
ano Other

T. 7FMTP ?,TP le T F. 0 74 :1

1 14 727 :i 20 23 26 27 29 3 :3 0 .5 13 0 10 13 17

2 27 12 27 14 12 19 12 6 19 . c 9 0 49 el 25

3 26 19 16 34 02 37 34 19 47

4 14 6 27 59 59 9 40 35 :5

22 3 26 8 11

The necif c cateares or Questions 1,4 were:
Question 1: The 31702:5 for oivisehn are re tricted to shall n0acers. For beg nuseerc, devlsion

s eiecnahe al.. .

Question 2: xcianatio for division -iv 3 instead of division by 1/3 (in otherworas, aivision
v 1i3 :s .fiorsto.so as o:.eseon :y 31.

On Qui like to :1:uStrete ne catelorles -ny sue guostions.

Because of lack of space we Co not bring here their analysis. This will

be given elsewnere.

Question it (23 Division can be uSeclas the inverse operation of

multiplication. By what snould we multiply 84 in order to get 381 (The'

formal approach).

(2) We want to know now many times there are 84 in 381 (Quatative

1') 381 is consisted of 381 partial numbers which should be divided Co

84 sets (Partitive division).

(*3 You Co not illustrate the meaning of division.by means of large

numbers.- The goal is to explain'wnaidivision is. One snould stay at

the range of small numbers (The specific category for this question).

(2) YOU should explain What- is 8 divided bY 4. 381:84 is carried out

automatically"(The specific category for this operation).

Question 2: (2) :(1/2):(1/3) is a formal operation only. This is oecause

division by a fraction appears as multiplication (2/2)x(3/1). .(The

fOrmal approach.)

(2) One nalfof a cake is given to one third of a person. Since every

person is a whole, he or she gets one cake .and a half. (Partitive

Civision.) 301
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() (1/21:(1/31 is dividing half a cake to one third of a class

(Partitive division.]

(.) 1,0w many times does 1/3 go into 1/2. (Quatative division.)

(.1 If I have a half of a certain quantity, like half a cake, I divide

by 3 and each part is 1/6, (1/21 : C1/31 = 1/6.

(The specific category for this question)

() Half a cake was left in the refrigerator. I gave 1/3 of it to each

of my children.(The specific category for this question.)

Question 3: The correct answer to this question is, Of course, that

18:3 is neither partitive nor quotative. 18:3 has the potential to be

either partitive or quotative, it depends on the situation wnere it is

used. Such answers were classified as "partitive or quotative" in Table

1. In the other answers it was claimed, that 18:3 was either partitive

or quotative, out cannot be both. Namely, 66% of the teachers, 81% of

the preservice teacners and 53% of the Math. coordinators did not

demonstrate in this Question the understanding that division is an

abstract operation and partitive and quotative divisions are two of its

concrete models.

Question 4: (.3 Division by zero, is meaningless. .(The formal

approach.)

(1 Division by 0 is not permitted. The answer is not reasonable

(Formal.)

() This is o meaningless expression. Every division exercise can be

checked by a multiplication exercise. For instance: 6 : 2,= q.

6 . 2 x 3. But 5 : 0 . ?, 5 = 0 x .. Every number multiplied by 0 is

0 and not 5. (Formal.]

(1 5 : 0 . 5. To divide five cakes.to 0 children, Ill be left with

fi)4.(Partitive)

() 5 : 0 . 0. 0 represents here nothing. Therefore, 'division by

.nothing of any number is 0. (Partitive or quotative.)

Question 5: () Essentially the student is right. However-, in the

Case of 0/0 it is meaningless becauSe it can be any number, even'8, 0/0

8, 0 x B = 0.(Formal).

(.) 0/0 = 1 because 0 x 1 . '0. (Formal.)

(.) 0 is not' like other numbers. (Formal

0 2 COPY AVAILABLE
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(.) 0 of something divided by 0 Children gives 0.(Partitive.)

(.) 0 has no numerical value, therefore it is iMpossiale that division

by 0 will give a numerical value. The answer must be 0. (Partitive or

quotative.)

(.) (0/0) . 1 because 0 is less than 1 and when you divide the result
should be less than the dividend. (Partitive Or quotative.]

(.7 It is wrong. You should always ask the division question: how many

times the divisor is in the dividend. When you consider 0, the answer

to the question "how many times Cher is 0 in 02" is O. (Quotative.)

Question 6 was designed to examine the relation between division and

other arithmetical operations (multiplication, repeated addition ana

repeated subtraction). DistraPtor (0) was an irrelevant distractor
wnereas in all the other aistractors there was a real Offer. The

results are given in Table 2.

Table 2
Distribution of answers to Question 6.

The relation between division -and other aritnmetical operations
(The numbers indicate percentages)

Category Multiplication
(aistractors
(a) and (e))

Repeated
addition
(distractor

Repeated
subtraction
(distractor

Distractor
(a)

No answer

Group (c)] (a))

Teachers 30 16 13 3 38(N = 183)

Preservice
Teachers 42 16 3 6 33(N . 72)

math.Coor-
ainators. 50 16 5 3 26(N . 54)

We would like to note that the only case where respondents chose more
than one distractor was the combination of (a) and (e). No other

combination has been found. Thus, in the context of this question, the

Percentages of those wno are aware of the special relation between
division and multiplication in the three groups are 30, 42, ant] 50.
respectively.

The analysis of the answers to Questions 7-10 is organized in a

similar manner to those-of Question 1-5. Because Of lack of space we

will not illustrate the answer categories by quotations.

303
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Table 3

Distribution oi answers in percentages) to Dues. 7-10 in the three orates.
T-teacnersiN.153),?-preservice teachersiN.72i,M-71ath.coordinators:1=54)

Category

;'uestion

A correct answer

,itn a curr :t or
ev.n partially

correct explanation

A category

EN'iii to

one que-cion

iii. be CAi

Pultiplica ion

makes big er

ant aivis on
makes seal er

A wrong answer

based on
utter principles

No answer

P
. 7

P P. P D TFITEM
29 46 7.7 29 27 0 24 0 17 23 17 20 15

9
23 46 25 27 23 2 35

f3 47 15 12 0 i 29 29 3

10 32 51 EC 40 20 13 9 19 20 14

Note that Duestion A was administered to half of the sample and Doestion 10 to the other
half.

The specific categories for hestions 7,8 were:

Ouestion 7: The answer was given after a computation was carried out. There was no attempt
to eataollen the answer en general arguments like: multiplication uy a 1possiolel
fraction smaller than 1 sakes smaller.

alestion 9: always lakes smaller sac division by a fraction
revs titter cverceneraii:ation ofthe :ase of-proper fractions:

Discussion
As we explained in the introbuction, our goal in this. study was to

verify and examine directly some claims about models for division and

some views about division and multiplication, claims which were made by

indirect methods using psycnological interpretation of certain data

(Fischbein et al., 1985). We found that these claims were basically

correct but the situation is much more complex than itis described in

Fischbein et al., 1985 and Tirosn et al., 1986, 1987. In Fischbein,

1985, the elementary teachers are treated as if they have the required

mathematical knowledge. ("Teachers of arithmetic face a fundamental

didactical dilemma.... This is one instance of a general dilemma facing

mathematics teachers". 0.15. there, last paragraph.) This study and

also previous ones (as Tirosh et al.. 1986, 1987) clearly show that

Fischbein's implicit assumptions have no ground. The elementary

teachers, as a group, lack basic mathematical understanding of

arithmetic.

kSi COPY AVAILABLE
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THE INFLUENCE OF SOCIALIZATION AND EMOTIONAL FACTORS

ON MATHEMATICS ACHIEVEMENT AND PARTICIPATION

Delene Visser, University of South Africa

This study concerns the explanation of sex differences
that typically occur from adolescence onwards and favour
males in achievement and participation in mathematics.

In the absence of conclusive biological evidence,

social, emotional, and attitudinal factors were investi-
gated in this regard. The subjects were 1 605 Afrikaans-
speaking seventh and ninth grade students and 2 506 of

their parents. Cognitive measures included mathematics
achievement and several aptitude tests. Also measured

were attitudinal variables such as confidence and

enjoyment of mathematics, perception of the attitudes of
significant others- towards self, personal and general

usefulness of mathematics, and the stereotyping of

mathematics. For ninth grade students, but not, for

seventh grade students, significant differences favouring
males were found in spatial .abilities and several

attitudinal variables. The intention to 'continue

participation in mathematics was accurately predicted by.
attitudinal variables-in the case of ninth grade females,

but not males.

Adequate preparation in 'mathematics has aptly been called the

'critical filter' in the job market. A6 a result of technological

advances and the information explosion, a certain degree of mathema-

tical sophistication has become a prerequisite for most prestigious

occupations. Students who elect to discontinue their mathematics

studies while they are still at school thereby effectively' eliminate

themselves from the majority of better. paid occupations. Further-

more, in a developing country such as South Africa where every

effort should be made to alleviate the shortage of scientific,

research, and technical personnel, an obvious starting point is to

.ensure that as many students as possible complete the mathematics

courses offered at school.

In South Africa mathematics is compulsory until the ninth grade,

whereafter students may opt either to discontinue their mathematics

studies,, or to continue until the twelfth grade. The far-reaching

decision to discontinue school mathematics is therefore made by 14
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to 15 year old adolescents, which makes it especially important to

establish which factors influence their decision during this period.

It has been reported frequently that no or few sex differences in

mathematics achievement or ability are evident until the age of

about 13 years, whereafter the performance of females begins to de-

cline in relation to that of males, especially in areas such as

problem solving (Armstrong, 1985; ETS, 1979; Husen, 1967; Maccoby &

Jacklin, 1974; Preece, 1979; Wise, 1985;'Wood, 1976). At the upper

end of the achievement scale it seems that sex differences favouring

males are even more pronounced. Benbow and Stanley (1980, 1983) re-

ported sex differences among mathematically gifted students from

about the seventh grade, while the ETS (1979) report also confirmed

superior performance by males among the top scorers on the Mathema-

tics SAT. Males are also far more likely to enrol in high school

mathematics courses than are females (Fennema & Sherman, 1977;

Sells, 1978;. Wise, Steel, & MacDonald, 1979).

In South Africa similar tendencies are found. During 1980 72% of

the twelfth grade males as against 48% of the females in the Transvaal

(white population only) studied mathematics. It should be remembered .

that not all of these students passed mathematics or attained levels

of achievement which would have allowed them access to mathematics-

related.university or technikon courses. The corresponding figures

for 1984 were 84% for males and 62% 'for females. It is gratifying

to note that the position has improved for both sexes, but the fact

remains that notable sex differences in school mathematics participa-

tion still exist in South Africa.

With regard to achievement, no noteworthy sex differences in

twelfth grade final mathematics examination results were found.

Among the top scorers, however, males predominate. During 1982,

4,6% of the males as against 3,5% of the females scored over 80%,

whereas the corresponding figures for 1984 were 3,2% for males and

2,6% for females. A nation-wide mathematics olympiad is arranged

annually for mathematically gifted students. In the period 1966 to

1985 only 12 females gained silver medals as against the 183 silver

medals awarded.to males. No gold medal has yet been awarded to a

female, and in 1986 only five females as against 98 males progressed
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to the final round of the olympiad.

The differentiation in mathematical functioning between males and

females which is manifested from early adolescence onwards, needs to

be explained in terms of developmental changes which occur during

this life period. In the absence of conclusive biological evidence

to explain the said differences, it was decided to investigate the

role of affective, motivational, and socialization factors in this

regard.

Although sex-role socialization starts at birth, it is from early

adolescence onwards that sex-appropriate behaviour is increasingly

expected from males and females (Mussen, 'Conger, Kagan & Huston,

1984). Mathematics has traditionally been regarded as a male

domain, because so few women have distinguished themselves in this

field. Even in recent years mathematics is stereotyped as a male

domain, particularly by adolescents (Brush, 1980; Ormerod, 1981).

Important socializers such as parents, peers, and teachers put

pressure on adolescents to conform to sex role standards (Mussen et

al., 1984). It is therefore to be expected that males would be

encouraged in mathematids,- whereas females would be discouraged in a

variety of subtle ways. Females may consequently develop anxiety

about mathematics achievement and feel less motivated than males to

participate in the subject.

METHOD

Seventh grade students were selected to represent the early

adolescent group in this study, whereas ninth grade students were

selected to represent the adolescent group. The students were

randomly selected from Transvaal Afrikaans schools after stratifica-

tion by sex and rural-urban location. Thirty-six high schools and

36 primary schools were included in the study. The parents of each

student were also invited to participate in the study, and almost
80% of them agreed to participate. The sample consisted of 824

seventh grade students and 781 ninth grade students. .Altogether 1

186 fathers and 1 320 mothers participated in the study. The mean

age on the first day of testing for seventh grade students was 12,4

years and for ninth grade students 14,4 years.
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The measuring instruments included standardized aptitude tests,

mathematics achievement tests developed specially for this study,

translated versions of American questionnaires, and questionnaires

developed with this study in mind.

Six subtests of the. Junior Aptitude Tests (JAT), standardized by

the Human Sciences Research Council (HSRC), were used for measuring

verbal and reasoning ability, numerical ability, and spatial visuali-

zation.

Two mathematics achievement tests, one for seventh and one for

ninth grade, were developed especially for this study by the HSRC.

The tests were based on the students' current mathematics curricula.

Eleven Likert-type attitude scales were developed and/or trans-

lated to measure students' and parents' attitudes to mathematics.

The first four scales mentioned below are similar to the Fennema-

Sherman Mathematics. Attitudes Scales (Fennema & Sherman, 1976) with

the same titles and were developed by Visser (1983). Items adapted

from Aiken's E- and V-scales (1974), items from the Fennema-Sherman

Scales, and several original items, were included in the final

'scales.

The Confidence Scale was developed to measure a subject's confi-

dence versus his/her discomfort, anxiety, and uncertainty when

dealing with mathematics.

The Motivation Scale measures a,subject's interest in and willing-

ness to become more deeply involved in mathematics.

Other scales were the Male Domain, General Usefulness, Personal

Usefulness and Attitude toward Success Scales.

The Perception of Father's (Mother's, Teacher's, Male Peer

Group's) Attitude Scales were included to measure the perceived

interest and. encouragement from significant. others.

The Importance for 'X' Scale measures the importance attached by

parents to their child's mathematics studies and the degree to which

they encourage the child.

The attitude scales were scored such that a high score indicates

a positive attitude toward mathematics. On the Male Domain Scale a

low score is indicative of the stereotyping of mathematics as- a male

domain.
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RESULTS

Interesting results included thefollowing:

As early as grade 7 more males than females intend to persist

with mathematics until the twelfth grade. In the ninth grade

94 percent of the males as against 65 percent of the females

indicated that they wished to.complete theii mathematics studies.

In accordance with the findings of overseas studies; a clear

picture failed to emerge for sex differences in mathematics

achieVement over the entire range of the achievement scale. It

was shown that in the USA males predominate' at the top end of the

scale, but also that males .do not usually obtain higher school

marks in mathematics. In the present study t tests using sex as

independent variable were performed: on each of the student

variables. No sex differences were found on the mathematics

achievement tests in either of the grades. Furthermore, no sex

difference was found in. either of the two standards on the

computation test, JAT Number.

It has been hypothesized. that sex differences in mathematics

achievement may be explained by sex differences in spatial

orientation and visualization which are also typically found from

adolescence onwards (Connor & Serbin, 1980; Fennema & Sherman,

1977; Maccoby & .Jacklin,. 1974). No sex differences were found

'for seventh 'grade students on the JAT Spatial 2-D and Spatial 3-D

tests, whereas significant differences on these tests favouring

males were found for ninth grade *students. If sex differences

had been found on the achievement tests, particularly with regard

to certain branches of mathematics, the obtained sex differences

in spatial visualization for ninth graders might have provided an

explanation.

As far as the attitudinal variables were concerned, it was found

that seventh and ninth grade males were more .inclined than their

female counterparts to regard mathematics as personally useful

and had a more positive perCeption of the male peer group's

attitude toward themselves as learners of mathematics. Males

were also more inclined to stereotype mathematics as a male

domain. However, on the Confidence, Motivation, Father and
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Mother Scales significant sex differences favouring males were

found only in the older age group.

Although parents agreed on the general usefulness of mathematics,

fathers had higher scores than mothers on the other attitudinal

variables. Both mothers and fathers regarded mathematics as more

important for their sons than for their daughters.

These findings lend support to the hypothesis that developmental

changes caused by the environment during adolescence may be

partially responsible forsex differences in mathematics partici-

pation.

It was decided to use a purely predictive model rather than 'a

'causal' model for determining the relationships between the

'various cognitive and attitudinal variables and the dependent

variables; mathematics achievement and mathematics participation.

Step-wise multiple regression analyses were performed for each

grade and sex for mathematics achievement as dependent variable

and for intended participation as dependent variable.

It was found that cognitive variables are the best predictors of

mathematics achievement during the seventh and ninth grades, but

that several attitudinal variables and some parent variables correla-

te highly with the achievement of ninth grade females.

PUrthermore, attitudinal variables predominated over cognitive

variables as predictors of intended' mathematics participation. It

was found. that the pattern of high correlations varied according to

the sex and grade of students. In the case of males, especially'

ninth grade males, very few variables correlated highly with intended

participation, whereas cognitive variables seemed to be almost

.irrelevant. Only Personal Usefulness had a substantial correlation

with intended participation for ninth grade males. The low squared

multiple correlations (0,33 and 0,26) reflected the above observa-

tions. The decision of adolescent maleS' to,continue their participa-

tion in mathematics is therefore to a large extent taken independent-

ly of the study variables.

A different picture emerged for females. Several student attitude

variables 'correlated highly with intended participation for both

-trades, whert9 cognitive variables and the Importance for 'X'
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(Father and Mother) Scales also correlated substantially with the

dependent variable for-ninth grade females. Five attitude variables

and one cognitive variable accounted for as much as 65% of the

variance of ninth grade females' intended mathematics participation,

whereas the squared multiple correlation for. seventh grade females

was only 0,41. Encouragement of parents seemed to be a major

influence on the mathematics behaviour of adolescent females. For

males as well as females, perceived personal usefulness of mathema-

tics was the strongest predictor.

DISCUSSION

The purpose of this study was to identify and explain the factors

affecting mathematics participation and achievement during adoles-

cence and, in particular, to find explanations for sex differences

which typically occur from adolescence onwards in mathematics

behaviour.

Developmental changes do seem to occur,in the period. between

early adolescence and adolescence which negatively affect the

affective and attitudinal position of females with regard to mathe-

matics, as well as their perception of the expectations and encoura-

gement of significant others.

The findings of this study support the view that early adolescen-

ce is a critical period during which achievement patterns in mathema-

tics are established, with'almost inevitable implications for future

vocational options.
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NETACOGNITION AND ELEMENTARY SCHOOL MATHEMATICS

Miriam A. Wolters, Department for Developmental Psychology. State
University Utrecht The Netherlands.

Abstract
Recent research on cognitive development, memory, reading and mathematics
indicates that much attention is given to metacognition. This paper is

intended as an introduction to the operationalisation of metacognition

and the role elementary school mathematics plays in metacognitive

development.
The longitudinal study assessed the effects of two approaches in school

mathematics on the development of-metacognitive skill. In each condition

15 students were followed from the first through the fourth grade. During

these years they were tested four times in order to assess the

developmental level of metacognitive skill. The data are analyzed by
trend- and t-test'analysis and the results are discussed.

Introduction

The basic purpose of the study is to develop instruments for measuring

metacognition and -to determine the effects of elementary school mathema-

tics on metacognition. Zn recent years metacognitive processes during

mathematical problem solving have become an importune topic of discussion

in mathematics education (e.g. GarOfalo, lambdin Kroll & Lester 1987;

DeGuire 1987; Hart.1987). However, none of these studies look at meta-

=ognitive functioning in students aged 6-10. Therefore, in this paper we

refer to studies of metacognition as a developmental phenomenon. Two

categories of metacognitive activities are mentioned: (1) those concer-

ning conscious reflection on one's own cognitive activities and abili-

ties, and (2) those concerning self - regulatory mechanisms going on during

an attempt to learn to solve problems (cf. Wertsch 1985).

In this paper we are concerned with this second category of activities.

This category involves content-free strategies or procedural knowledge

such as self-interrogation skills, selfchecking, and so forth. In other

words it is an activity by means of which the learner manages his (or

her) own thinking behavior.

A central problem in the research on metacognition is the adequacy of

assessment techniques designed to measure metacognition. Meichenbaum,

Burland, Gruson & Cameron (1985) consider several different techniques

that can and have been employed to study metacognitive activities in

children. They point out that one of the pitfalls of the interview and

think-aloud techniques is that the interpretation of the data yielded by

314



- 642 -

such techniques is problematic. The most serious problem here arises when

a subject has trouble verbalizing his answers or thinking pattern. The

absence of an adequate response does not necessarily mean that subjects

are not involved in metacognitive'activities. For example, Gruson demon-

strated on the basis of observations that there are subjects who show

consistent strategies, but who fail to verbalize such strategies. The

same phenomenon was also observed in Burland's and Cameron's.data. Thus,

the use of interview and think-aloud techniques raises an important theo-

retical issue: do we indeed limit the definition of metacognition to the

subject's abilities to verbalize their thinking process?

A somewhat different approach without the above mentioned pitfalls is

to assess metacognitive involvement directly on the basis of performance

without the subject reporting his thinking process either during perfor-

mance or afterwards. Gruson (1985) has shown that it is possible to infer

the use of metacognitive strategies on the basis of repeated patterns

evident while carrying out the task. Examples of how one can formally

conduct metacognitive assessment without using self-reports come from the

work of Sternberg (1983), Butterfield, Wambold & Belmont (1973) and the

Sovietpsychological work of Isaev (1984) and Zak (1985).

In our study we further develop the line of investigation introduced by

the SOviets, i.e. conducting metacognitive assessment directly on perfor-

mance, thus making less use of verbal questioning sndfocusing more on

behavioral observations. The Soviets see the issue of reflective thinking

or metacognition as a continuum beginning with manipulative, strategies

and eventually progressing through empirical towards more theoretical

strategies. A manipulative strategy consists of moves that are not guided

by the goal. Such a move does not logically follow subject's preceding

move and neither is it the basis for the next move; the moves are not

connected. Most often a large number of superfluous moves is needed to

reach the end result. Subjects using an empirical strategy approach the

task through moves or actions that change the situation step by step. The

subject expects a specific result from a move and takes that into account

when making the next move. Subjects using a theoretical strategy think

over their solution beforehand. These subjects use the first and second

item to search for most efficient way of solving the task by testing in

their mind sometimes three or four non-optimal alternative strategies.

In this study the tasks measuring metacognitive skill are designed in a

such a manner that the observer is allowed to draw inferences about the

level of metacognitive functioning. The non-mathematical task is con-

structed to elicit different solving strategies. An integral part of the
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task are the specific procedures for scoring the different strategies a

subject uses when solving a given task. The tasks and scoring procedures

are designed in such a way that subjects who change strategies can be

identified as well. Subjects require no special knowledge and are not

familiar with the tasks. The subjects apparently like to do the tasks.

They can not fail them because they are constructed in such a way that

nobody can do them wrong; the only thing that matters is the way in which

the subject handles the task. .

METHOD

Subjects

Students from four middle class schools participated in the longitudinal

study. The schools were choosen because of their willingness to partici-

pate. Two schools followed a traditional mathematics curriculum and for-

med the so called control condition. The other two schools followed an

experimental structuralistic mathematics curriculum and formed the expe-

rimental condition. 15 students were selected from the control condition

and 15 comparable students were selected from the experimental condition

on the basis of a pretest score, administered when they entered first

grade.

Procedure

When entering first grade students were pretested to assess a general

cognitive developmental level. The pre -test was administered. by the-class

teachers, but always with an experimenter present. The pretest score was

used to arrange two matched groups of 15 students. The mathematic activi-

ties then took place during the regularly scheduled mathematiCs lessons

from the first through the fourth grade. The traditional program.was

given in all four grades for the control group and in grade 3 and 4 of

the experimental group. Only in grade 1 and 2 an experimental structura-

listic approach was used. Four times in total the selected groups of

students were tested on metacognition. Twice in the second grade, in

December the Token task and in June the Mole task. In the third grade in

June the Strip task and in June of the fourth grade the Token task.

Instruments

1. The pretest. The pretest was designed to assess children's abilities

in.combining classification and seriation.--

Q ra
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2. Assessment of metacognitive skill. We used three tasks: the Token

task, the Strip task and the Mole task. Each task consists of 8 items.

After foUr items a moment of reflection for the subject is induced. This

happens indirectly by way of a special instruction. In the Strip task a

reflection moment is induced by indicating to the subject the need to

think before solving the task which is timed. After four items of each

task the subject is given the opportunity to think about the efficiency

of the strategy used and possibly change the strategy to a more efficient

one. In the Token task the activity is to make a'pattern of tokens simi-

lar to a given pattern in a minimal number of moves. In the Mole task the

activity is to find the shortest route of a mole to his feeding place in

a structured garden.

Instruction and scoring of these tasks will be illustrated by a detailed

description of one of the tasks: the Strip task.

STRIP TASK

The strip task was originally developed by the Soviet psychologist Zak

(in Wolters 1987) and was designed to measure reflection as a metacogni-

tive skill.
The material used is a board with an area of 30 x 60 cm on which two

parallel lines, with a distance of 15 cm.
Strips are used in the following numbers and measures:.
stripindex 1 2 3 4. 5 6 7 8 9 10 11 12 13 14 15 16

length 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

number 10 10 10 5 5 5 3 1 1 1 1 1 1 1 1

The length is given in cm. 'All strips are 3 cm wide

INSTRUCTION

The instruction consists of two phases. In the first phase the subject is

shown a model strip and asked 'to make up a strip of the same length as

the model. The subject is given a number of strips of varying length

and then told to use a specified number of strips for constructing a

length'equal to the model. It is emphasized that he has to think care-

fully before setting out to solve the task.
Before starting the task-items two introductory items are presented:

first a model strip with a length of 9 units is presented and the subject

is instructed to build a matching strip using two parts. The item is

coded as 9(2); the 9 indicating the length of the model and the (2) indi-

cating the number of parts to be used in matching the model. Task items
for the first phase are: 10(4), 14(5), 13(6), 12(7)
After the subjects have done four items they are given instructions for

the second phase. These are designed so as to encourage them to think

about the task before they actually begin selecting the strips to match

the model. They are told "from now on we will see how much time you need
to do a strip". The subjects are told that they can take as much time as

they want to think about the problem and that they will be timed only

when they begin selecting and placing the strips. For this phase four

additional items are presented to each student. This second phase is used
to determine if students change the strategy they used in the first phase

as a result of instructions given prior to, the second phase items. Per-
formance time is taken ir1tels: 16(9), 15(8), 11(7) and 13(6). One item



- 645 -

13(6) is used twice, once before time instruction and-once after time
instruction. This item is meant as an extra check to see if subjects
change their strategy.

SCORING

ITEM SCORING

Manipulative category (includes scores 1, 2 and 3)

This category includes behaviors that are haphazard and without any plan-
ning. The subject is unaware of the end result until aftei it has been
accomplished. It is only at that time that the subject recognizes that
the task is completed. The subject behaves according to the rules while
attempting to match the model in length but looses track of the requested
number of strips. The subjects in this category are characterized by
placing and replacing the strips ("removing behavior") eventually' coming
to use the correct number of strips by less removing behavior. Score 1
means that they end up with an incorrect number of strips. The difference
between score 2 and 3 is the number of strips removed and replaced.

Empirical category (score 4 and 5)

This category implies tnat a subject has in mind a strategy characterized
as inductive which means that the subject recognizes the goal of the
task. The subject has no need to remove strips once they are placed, but
rather adjusts the size of the strips as the task is being solved. The
subject behaves in a step by step fashion, placing one or two strips,
making a decision, placing another strip and adjusting the next and
continuing in this fashion until all the strips are correctly placed. The
difference between score 4 and 5 is that more steps are used for score 4
than 5.

Theoretical category (score 6 and 7)

The behavior in this category is the most efficient since the subject
proceeds in a deductive manner. The subject does all the planning prior
to the moment he actually puts the strips in place. In this fashion the
subject takes a stack of strips one less than the necessary number, pla-
ces these in correspondence to the model and then determines the size of
the last strip completing the comparison. With score 6 an estimation
error is made with the completing strip.

CODING OF METACOGNITIVE LEVELS

For each of the three tasks a score-level was calculated by taking the
mean score over the eight items. Apart from a score-level a so called
code-level was calculated, indicating the effect of the absent of reflec-
tion induced halfway each task. The procedure to obtain the code-level
for each task is as follows: for each of the three tasks for the first
four items and the second four items scores were placed in one of the
three categories: manipulative - empirical - theoretical. It was then
possible to obtain a coded score for each subject on each of the three
tasks based on whether or not the strategy changed from the first to the
second phase of each task. These coded scores, were placed in a numerical
hierarchy from 1 to 7 with a code-level of 1 demonstrating the strategies
using the least metacognition and a code - level of 7 demonstrating the
most.. For example, a subject with a code-level of 1 on the strip task
would have used a manipulative strategy for the first four items and
continued with a manipulative strategy for th four items after reflec-
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ting was requested. A subject coded 6 uses an empirical strategy for the

first four items and changes to a theoretical strategy for the second

four items. Fig.1 illustrates the seven code-levels that were used. A

student with a mean score smaller than 3.50, falling between 3.50-5.00,

or greater than 5.00 was classified as manipulative, empirical or theore-

tical respectively. The criteria for change from the first four items to

the second four items is that the difference between the mean score a-

chieved on the second four items had to be equal or greater than 0.75

than the mean score achieved on the first four items. In addition the

mean score for the second four items had to fall in a category above the

mean score of the first four items.

mean score
item 1-4

mean score
item 4-8

code 1 manipulative remains' manipulative

code 2 empirical changes manipulative

code 2 theOretical changes manipulative

code 3 manipulative changes empirical

code 4 empirical remains empirical

code 5 theoretical changes empirical

code 6 empirical changes theoretical

code 7 theoretical remains theoretical

fig.1 Calculation of the code-levels

3. Elementary school mathematics curricula

In the control condition the teachers used a traditional arithmetic pro

gran. In the experimental condition this traditional arithmetic program

was used from the third grade onwards. In the first and second grade an

experimental mathematical program'was used. This experimental, program has

a structuralistic nature and is very much inspired by the Soviet psycho-

logist Davydov. The program consists of three main structures: numeration

system, operations and relations. In the first grade the three structures

are taught separately and in the second grade the students learn to inte7

'grate 'them when learning to add and subtract two -digit numbers. The nume-

ration system of the program is described in Wolters (1986a), the opera-

tions part in Wolters (1986b). The part on relations follows a line of

thinking introduced by Davydov (1962).

RESULTS

To measure metacognitive skill validated instruments are needed. The.pro-

cedures and 'tasks were validated in another study. In that study we com-

puted with a group of elementary schoolchildren correlations between the

three taSks and the pretest. The correlations are: pretest with Token

task .31 (p=.09); pretest with Strip task .52 (0..009); pretest with Mole

task .68 (p=.001). The correlation between Tokeh and Strip task.is'.50

(p..01); Token and Mole task .73 (p =.001); Strip and Mole task .69

919
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(p=.001). This means that the metacognitive measures are highly related

to each other and for two of the three metacognitive tasks also highly

related to the pretest.

The results of a trend analysis of the changes in metacognitive code

per condition (experimental versus control) is depicted in fig.2. Fig.2

shows that the metacognitive code'in.the.control group increases with age

and years of mathematics

instruction. For the

6 experimental group a

different picture emer-

c -level

5

4

3

2 .

Dec '83 Apr '84
2-grade 2-grade

43.

decreases

MT

coarr
gem. At the first measu-

rement in the second

grade this group tends

to perform better on

metacognitive tasks.

Here the experimental

group outperformes the

matched control group.

June '85 June '86

3-grade 4-grade But at the second measu-

rement in the second

grade the difference

and dissappears completely at the end of the third grade. These

results indicate that the students in the experimental group beim develo-

ped their metacognitive abilities through working with a structuralistic

mathematics program in the first grade. The effects do not last long.

This can be explained first of all by the fact that after two years the

experimental group goes back to a traditional program. Secondly although

the method of teaching. still differs during the second grade both groups

learn to add and subtract two-digit numbers. As the teachers have to

teach material that they are familiar with they easily fall back on well

known teaching methods. So even during the latter part of the second

-grade the metacognitive -lead of the experimental group diminishes rapid-

ly.

1- measur

Mean SD
2-measur
Mean SD

3-measur
Mean SD

4-measur
Mean SD

exp 4.22* 1.56 2.44 1.01 4.00. 1.50 5.33 2.00

conitr 2.11 1.17 2.13 1.15 3.66 .70 5.00 2.00

Table 1 Means and standard deviations for metacognitive code-level for

experimental and control group
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A t-test analysis on the data of table 1 shows a significant difference

between experimental and control group at the first measurement in the

second grade (p=.003)
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THE DEVELOPMENT OF THE COUNTING SCHEME OF A FIVE YEAR OLD CHILD:

FROM FIGURATIVE TO OPERATIONAL

Bob Wright

Northern Rivers College

Aspects of a constructivist teaching experiment (Cobb &
Steffe, 1983) involving weekly teaching sessions with four
Australian children in their kindergarten year are
described. The study extended the theory of children's
counting types (Steffe at al., 1983) by studying children
younger than those studied in an earlier teaching
experiment which was the basis for the counting types
theory. It'also included aspects of numerical development
not in the earlier study. A description, illustrated by
excerpts from teaching sessions, of one child's progresdion
from the figurative to the operational stage is given. The
child creates motor, verbal, and abstract unit items when
counting screened portions of collections.

Allan was one of four children in the kindergarten year of school who

participated in a constructivist teaching experiment (Cobb & Steffe,

1983) during 1984. The participants were selected on the basis of an

initial interview, from a kindergarten class in a school which is

situated in a small regional city in New South Wales, Australia. Allan

joined the teaching experiment in July 1984 and was taught approximately

weekly from then until December 1984. Nine of these teaching sessions

were video-taped by an assistant, and the remaining eight were audio-

taped. The purpose of the teaching experiment was to extend the theory

of counting types (Steffe,, von Glasersfeld, Richards & Cobb, 1983) by

involving younger participants in'a setting culturally different.fiom

that involved in the study by Steffe and his co-workers (cf. Steffe et

al., 1983; Steffe, Cobb & von Glasersfeld, 1987). This study also

focussed on the role that temporal sequences of sounds and, movements

might play in the development of the counting scheme.

Steffe et al. (1983) identified a prdgression of five counting types;

perceptual, figural, motor, verbal, and abstract; characterized by

progressively less dependance on sensory input. Steffe (1984)

incorporated the counting types into three stages in the construction of
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the counting scheme. The first is the perceptual stage, where the child

can count perceptual unit items only. The second is the figurative

stage in which the child counts figural, motor,. or verbal unit items.

Finally, at the operational stage, the child counts abstract unit items.

The child at the last stage is labelled numerical and the child at the

perceptual or figurative stage is labelled prenumerical.

THE FIGURATIVE STAGE

Allan's solutioneof tasks in the teaching sessions of the 19 July and 3

August 1984, indicated that he had advanced beyond the perceptual stage

in the construction of the counting scheme. Each of the tasks involved

counting the items_of a partially' screened collection. In each of those

two teaching session's he counted the items of four partially screened

collections.. The number of screened items ranged from one to four.

That Allan consistently counted the items of partially screened

collections indicated that, at this time, he had advanced beyond the

first, counting type.

Those teaching sessions were audio-taped but not video-taped. Therefore

it was not possible to determine the nature of the items that Allan

created as he counted. Allan typically did not count aloud.

Nevertheless a consideration of the relative times he took to count the

collections indicated that he was probably counting from "one". In the

same teaching sessions Allan had consistent difficulty with a second

kind of task. This also involved a partially screened collection but in

this case the teacher would tell Allan how many counters there were

altogether and ask him to find how many were in the screened portion.

The observation that Allan could not solve these tasks together with his

likely counting from "one" on the first mentioned tasks indicated that

he could not construct abstract unit items and therefore was in the

figurative stage.

COUNTING MOTOR AND VERBAL UNIT ITEMS

In the teaching session on 14 August 1984 Allan counted the items of six

partially screened collections and four collections partitioned into two

screened portions. Two distinct types of counting activity were
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observed when Allan counted these collections. One type of counting

involved tapping. The other usually did not involve sequential

movements but occasionally involved nodding. Neither type involved

vocal utterances or discernible lip movements. Nevertheless, as an

inference from the times taken, there was little doubt that Allan

counted each collection from "one". For the first task the te4..cher

displayed five counters and directed Allan to count them. After Allan

had done so the teacher screened the five counters and displayed three

more. The session continued as below.
,

T: How many would that be altogether? .

A: (Places his left hand in his mouth and makes vertical
movements with his lower jaw while looking at the
teacher.)

T: (After eight seconds, interprets Allan's looking at him as
not understanding.) If I put those (Points at the three
unscreened counters.) with those how many would that be?

A: (Looks downward. After six seconds looks up at the
teacher, and smiles.) Eight.

In the last part. of his solution Allan neither looked toward the

counters nor made any'movements. His behavior was consistent with

having subVocally uttered the number words from "one" to "eight". This

indicated that his number words signified countable items and therefore

he.counted verbal unit items. Allan was continuously engaged in

counting the second collection for fifty seconds and during that period

he spontaneously restarted the task three times. Allan's first attempt

to count this collection is described in the following protocol'. Seven

counters were screened and three were visible.

T: (Screens the seven counters and then places three visible
counters on the desk.) How many would that be if I put
all of those together?

A: (Pauses for five seconds and then places his hands on the
desk. Looks at the screen. Taps three times slowly,
pauses, then taps four times slowly as before. Looks at
the unscreened counters for two seconds.).

That he.was apparently unable to continue counting when he looked at the

unscreened counters indicates that, when he was looking at the screen

and tapping, he-was counting his movements rather than items which
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corresponded to the screened counters. His movements merely signifier

the screened items. Because he was focusihg on his movements rather

than substitutes for the screened items he was not aware that he could

continue to count the visible items. This was an indication that he

counted motor unit items. In this teaching session Allan also counted

two collections each of which had been partitioned into two screened

portions. The first of these contained two screened portions of five.

Allan counted motor unit items when counting each portion of this

collection. The second collection contained a screened portion of eight

and one of six. Allan solution is described below.

T: (Points to the two screens in turn.) Eight, and six. How
many altogether?

A: (Makes eight deliberate movements of the fingers of his
right hand while looking toward the portion containing
eight counters. Looks toward the screened portion of six.
Makes six nods of his head, each of which involves opening
and closing his mouth by holding his lower jaw and raising
and lowering his head. Than looks at the teacher.)
Fourteen.

When he counted the first screened portion or eight counters Allan

focused on his finger movements and therefore was counting motor unit

items. Although Allan nodded his head when counting the second portion

it is unlikely that he counted his nods. Steffe et al. (1983) "found no

evidence that ... nods ... are ever taken as countable motor items ...

(and suggested that] this may be due to the fact that the kinesthetic

feedback ... is automatically used by the nervous system in compensatory

computation that keep's the perceiver's visual field stable" (p. 39).

The most plausible suggestion is that when Allan counted the second

collection his subvocal number words signified countable items and

therefore he counted verbal unit items.

In the teaching session of 14 August 1984, Allan counted motor unit

items on at least six occasions and verbal unit items on at least five.

In the teaching sessions that followed Allan frequently counted verbal

unit items but was not observed to count motor unit items. This

indicated that, during tha, period, he was at an advanced level in his

figurative stage.
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FAILURE TO CREATE ABSTRACT UNIT ITEMS.

In his weekly teaching sessions from 19 July 1984 onward Allan was

presented with tasks which from an adult, perspective would be regarded

as subtractive. In one kind of task, usually referred to as missing

addend, the teacher would place out a collection partitioned into a

screened and an unscreened portion. The teacher would then tell Allan

how many were in the whole collection and direct him to work out how

many were screened. In a second kind of task the teacher would display

a collection of counters and ask Allan to count them. The teacher would

then ask Allan to turn away and, when he had done so, the teacher would

separate and screen a portion of the collection. Allan's task was to

figure out how many counters had been screened. Allan consistently

failed to solve these tasks until the final teaching session on 12

December 1984. In the excerpt below, from the teaching session on 6

November 1984, it can be seen that Allan fails on a missing addend task

in which five counters were visible and two were screened..

T:

A:

(Points to the screen.) How many under here to make seven
altogether? Five (Points to the unscreened counters.),
and what (Points again to the screen.)?

(Closes his eyes, looks down, and touches the backs of his
hands to his forehead.) Umm, five! (Guesses.), umm.

T: When I put them together I shall get seven. (after four
seconds) Allan, you cover your eyes. (Removes the screen
while pushing the counters together.) Okay, watch! There
are seven. Now (Places the screen over the'seven
counters. RemoveS two which remain screened, while the
other five counters are visible.), how many are under here
to make seven?

A: (After two seconds) Three!

Missing addend tasks such as thesewere presented to Allan in most of'

the teaching sessions. The solution described above, in which Allan

apparently could do little more than guess was typical of his solution

attempts in all but the final teaching session. Examples of the second

kind of task described above were also presented in most teaching

sessions. Allan 'also consistently failed to solve these tasks until the

final session. The following example, from the teaching session on 28

November 1984, was typical. The teacher began by asking Allan to count

a collection of teh.counters.
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T: (Passes the screen to Allan.) Cover them up with the piece
of paper Allan please. (after Allan screened the
counters) Now reach under and take two away. Without
looking! Use your hands. (after Allan removed two
counters) Now my question is how many are left (Points to
the screen.).

A: Umm (Thinks for eleven seconds while looking forward and
rocking in his chair.), Four! Five!

T: I shall show you again. (Pushes the two counters under the
screen and then removes the screen.) How many are there
now?

'A: Umm (Subvocally counts the collection of ten counters.),
ten!

T:. (Replaces the screen and then removes the two counters as
before.) How many would be there now?

A: (Thinks for seven seconds.) Six!

Until the last teaching session on 10 December 1984, Allan consistently

failed to solve missing addend tasks as well as tasks similar to the one

described above. This led to the conclusion that he could not create

abstract unit items.

CREATING ABSTRACT UNIT ITEMS

In his final teaching session, on 10 December 1984, Allan indicated that

he had advanced beyond the figurative stage. On five tasks he

identified two missing addends of two counters and two missing addends

of three. He failed to identify a missing addend of four counters.

Allan's solutions of two of the tasks are described below.

T: (Places out eleven yellow counters.) I think there are
eleven there. Can you see if I am right?

A: (Counts aluud while pointing to the yellow counters in
turn.) One, two, ...eleven.

T: (Places out a screen which conceals two red counters, while
leaving the eleven yellow counters unscreened.) Now, with
these it makes thirteen.

A: (Looks at the screen 'or ,,,ur; .wuunas and then looks up at
the teacher.) Two!

T: Let us see.
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A: (Lifts up the screen and smiles after seeing the two red
counters.)

T: Oh! Very good!

A: I know that because after eleven comes twelve and thirteen.

T: You were'right! (Removes all of the counters except two of
the yellow ones.) Okay, well how many are there now?

A: Two.

T: (Places out a screen which conceals three red counters,
while leaving the two yellow counters unscreened.) Now
with these it makes five.

A: (Looks at the screen for three seconds and then looks up at
the teacher.) Three!

T: (Removes the screen to reveal the three red counters.) Very
good.

Allan indicated that he could now keep track of a continuation of

counting, and in so doing, identify missing addends. He had been quite

unable to do this before. This counting involved creating abstract unit

items.

In his final teaching session he also solved three of five tasks which

involved a comparison of two screened collections. He had failed to

solve similar tasks on each of four earlier occasions when these had

been presented to him. One of the tasks he solved in the final teaching

session (10 December 1984) involved comparing seven cubes and ten

counters. Allan's solution is desciibed below.

T: (Places out seven cubes.) Let us have that many jockeys.

A: (Looks steadily at the cubes for nine seconds and does not
point.) Seven!

T: Will you cover them up! There are seven jockeys (Places
out ten counters.). Tell me how many horses we have?

A: (Covers the cubes.and then looks steadily at the counters
for twenty -four seconds and does not point.) Ten!

T: Will you cover them up! (Slowly touches the screens in
turn.) Seven jockeys, ten horses, how many horses would
not' have a jockey?

A: Umm'(Looks at the teacher for three seconds.), three!

T: (Motions Allan to remove the screens.) You try it. Let us
figure it out. Let us put the jockeys on the horses.
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A: (Slowly puts :a cube on each counter. Then looks steadily
at the counters which do not have a cube on them, and
after six seconds looks up at the teacher smiling.) It
was:!

Allan's ability to solve tasks in his final teaching session that, in

previous sessions, he,responded to by guessing, indicated that a re-

organization of his counting scheme was underway. This suggested that

he was advancing to the operational stage in his construction of the

counting scheme.

FINAL REMARKS

This paper describes one aspect of a teaching experiment which was

designed to extend the theory of children's counting types (Steffe et

al., 1983). It is clear from the teaching experimedt that the theory

can guide the teaching of five year old children who are prenumerical,

and can be used to explain and predict the mathematical behavior of such

.children. All four children who participated in the teaching experiment

made substantial progress in the construction of their counting schemes

during their kindergarten year (cf. Wright, 1988). Allan, whose

progress is described in this paper, was observed to construct Motor and

verbal unit items when counting the items of screened collections .nd,

in his last session, he created abstract unit. items on subtractive

tasks.
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SAY IT'S PERFECT, THEN PRAY IT'S PERFECT:
THE EARLY STAGES OF LEARNING. ABOUT LOGO ANGLE.

Vicki Zack
McGill University, Montreal, Quebec

Abstract: The longitudinal naturalistic study has been
investigating elementary school children's understanding of
angle. Findings indicate that while discoveries about angle
are indeed being made, the pace of the learning has been
slow, There is a need for more time and continuity in the
learning and teaching of Logo,. and -for more explicit
teacher-elicited connections between Logo geometry and
school geometry, if. Logo is to play a role in the
mathematics curriculum.

. Within the emerging nucleus of work concerning, the learningof the

concept of angle in the Logo environment, there are a number of studies

which devote attention to the early phases of the learning (Hillel and

Erlwanger, 19834 Hillel, 1984; Noss,.19851 Hoyles, Sutherland'and Evans,

1985; Kieran, 1986). This piper focuses on the learning about angle which

takes place In the early stages of work with Logo-- the first'30 hours or

so of Logo learning.

In my-study, the exploratory "groping" stage.toward the learning of

angle has been more prolonged, on the part of some of the children, than

had anticipated at the outset. This longitudinal study in a naturalistic

elementary school: and then secondary school, classroom computer

laboratory setting has traced some'of the children's work in Logo

(approximately 12 sessions. per year) from grade 3 (8 to 9 year-olds) to

grade 7 (12 to 13 year7olds); and yet the majority of .the children can be

seen, in grade 7, to be still at the exploratory stage of work with

angles. The difficulties experienced by the children in this study confirm

some of the findings reported by.the afore-mentioned researchers, but the

pace of the learning has been slower. The discrepancy in pace between this

study and those cited above might in part be attributed to differences in

setting and curriculum agenda (for example: assigned tasks; time frame;

mathematics agenda; staffing by research and mathematics experts): What

IS certain is that the children have more difficulty with the 'seemingly

simple' aspects of Logo than the literature would sometimes hdVe us

believe.

Research was supported by a Social Sciences and Humanities Research

Council Doctoral Fellowship.
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In a previous paper (Zack, 1988), I presented findings concerning the

level of attainment vis-i-via angle of all of the 23 (grade 10 to 11

year-old) children in my.study, using as a means of focus their

Understanding of "right angle." This companion paper will feature two of

the children from that class. It will touch upon (a).their difficulty with

determining the size of a Wand other turns; (b) the language the

children use to describe turtle's location, heading, amount of turn; (c)

thell problem solving and'recording strategies; and (d) the fact that they

do n t make connections between Logo geometry and school geometry.

RESEARCH DESIGN

The setting was a private, multilingual Jewish day school. All

participants (11 girls, 12 boys) came from a middle class background. In

1985-88, the heterogeneous grade five class of 23 children, split into two

groups, attended twelve 50-minute Logo computer sessions in the computer

classroom equipped with8rApple Ile microcomputers, Apple Logo I software,

and one printer. The expert
i

Logo teacher, Monica Shapiro, used an

individualized approach with the student pairs. The projects were child

selected (exception: Monica assigned an across-class task during the last

session). No changes were made to the Logo software (exceptions: use of

slowt4rtle in grade 3; addition of a HELP command to the startup aids to

help students check turtle's heading when needed). The researcher was a

non-participant observer. An observational-clinical.research design was

used. The data included: the researcher's, the teacher's, the children's

notes; interviews with the Logo teacher; three clinical interviews with

the children (one at the start, one at the close of the grade five

session, 1985-8, with 29 children; one at the end of the grade six year,

May 1987, with 58 children); and in-depth videotape records, transcribed,

of the work of five pairs of children (both the Logo work and the camera

record of their interaction). Monica, the Logo teacher, wanted the

children to learn the Logo theorems via exploration, and via her input

when her help was solicited; .but the learning of mathematics concepts via

Logo was not the primary objective in her agenda.

Of the five pairs whose work was videotaped, transcribed and

analyzed, I have chosen the work of one pair to discuss in, this paper,

that of Lilly and Rine. Their attainment in relation to the rest of the

class was average; on the class grid, they will be found in the middle

range of the class (Zack, 1988, p. 100).
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STRIVING TO MAKE SENSE

The subtitle "Striving to make sense" pertains both to the children's

trying to make sense of Logo angle, and to the researcher's trying .to make

sense of what the children were doing and saying vis-i-vis their turns.

Lilly and Rina, and 18 of the other children in the class, used a purely

visual (Kieran, Hillel, and Erlwanger, 1988) feedback strategy for

determining inputs to RT/LT. I have termed it a context-referenced

strategy, for they only made decisions on inputs to RT/LT when in

immediate mode, using the screen as contextual reference. Rina and Lilly

used their own terms, what Kieren (1987) calls ethno-mathematical

language, to describe the turtle's location, and amount of turn (See

below, eg. "it's straight," "go halt," "go all the way around"). It was

only via contextual reference to the videotape that the researcher was

able to comprehend how Rina and Lilly's verbal descriptions'matched the

end result of the back. and forth, left and right, exploratory moves that

they had made.

PROBLEM SOLVING STRATEGIES AND RECORDING STRATEGIES

Lilly and Rina used the turtle to navigate (Sylvia Weir) around the

page as they drew. Because they did not yet have a sense for the size of

the rotational turn, they would "fiddle around" (Rina, May 1987) until it

looked like it was perfect. They would then often say."It's perfect," and

sometimes pray aloud that it be perfect.

They recorded step by step in their Hilroy book concurrently with

their moves. They combined on paper by bracketing in pencil the "like"

inputs. (There were no occurrences of the combining of unlike inputs,

either FD X BK Y = FD (X-Y), or, more difficult, RT X + LT Y RT

(X-Y).) Lilly and Rina used the editor is a (hopefully) accurate trace of

their immediate mode commands. No debugging was done in the editor. Rina

especially subscribed to a "Be safe but sure" motto concerning her Hilroy

entries: "I'm not taking any chances (Dec. 4) . . . . I'll write down the

mistake. As long as it turns out (Dec. 18)." In checking their Milroy

notebook inputs when attempting to find a bug, they could only resort to

reconciling the number and sameness (and for Lilly, the equivalence) of

the actual written entries. In trying to resolve an error in angular

rotation, they were never heard to use a "Does it make sense?" test, most

probably because they did not have a concept of the size of the turn

against which to gauge their input.
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EXPLORING THE RIGHT ANGLE TURN

I would like to consider more closely the difficulties for Rina and

Lilly entailed in what might seem to an observer to be a simple task,

namely that of constructing a rectangle. In grade 3 the children had been

"given" RT/LT 90 for making corners. And yet when Lilly and Rina embarked

upon the first part of their chosen project, the rectangle part of the

tape/stereo "ghetto-blaster" they wished to make, they had to work through

each corner turn. The episode below took place midway through their Logo

sessions (November 20, 1985--Session 46). I chose it as a focal point of

reference because it offered a glimpse at the children's moves, their use

of language, their awareness of visual cues which signal error, and their

interaction with neighbouring peers vis-à-vis their product.

They arrived at the, first turn (marked 1 below) by keying RT 35, RT

35, RT 10, RT 5. Lilly declared: "It's straight." As soon as they

proceeded with Line A, they saw that the line was jagged. Their evaluation

followed. Lilly said, "It's good"; Rina said, "It's bad"; Lilly countered

with: "It doesn't matter." [However, as became clear in subsequent .

comments, the jagged line did bother them--Rina especially-- very much.]

At this point they let it be. Rine expressed

surprise at, the combined sum--85, and stopped

to reconfirm, with Lilly that it did indeed

take "RT eighty-five" to "get all the way

around."
4

A 2

3

For turn 2, Rina used the information from the previous turn. She

stated: "We wanna go half, we want RT 85." [It is only by contextual

reference to the screen, and by the fact that one knows that they are

aiming for a "corner" that one follows that "all the way around" and "we

wanna go half" both refer to a quarter turn.] Rina and Lilly then

proceeded to disagree about the input, and it sounded as if they were

still disagreeing when they both decided on an input of RT 95, which, with

serendipity, was the correct input. The subsequent line, Line B, was

straight.

Turns 3 and 4 were the results of inputs of 90; there were

lateralisation errors, but both children agreed that 90 was the input, and

they used corrections of 180 when'needed. One might think that they had

now grasped the importance of 90 in making a smooth corner with straight

line arms. It was clear however that they had not yet mastered the 90 when

one listened to Rine and Lilly's interaction with neighbouring peers (Russ4
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Michael) which followed shortly after the teacher had come by and "ticked

off" that the rectangle part wasdone.

Russ: Rina, Rina- Shouldn't the line on top be straight?

Rina: Ya, but we didn't do that.

Russ: So why didn't ya do it?

Rina: We didn't do it. (Points to the CRT) It turned out like that.

Russ: Ya, 'cause you did something wrong.

Rina: No, we didn't do 'anything wrong.

Lilly: 'No, we didn't.

Russ: (inaudible)

Rina: (getting back to work, leafing through the pages of her
recording book)
'Kay, we have to get into the edit6r.

Michael: You DID, 'cause you went downwards. (inaudible)

Russ: A line would never be like that.

Rina: You wanna bet it would? It happened (? to me a couple

o' times)

Lilly: 'BIG DEAL! (Now sitting straight, looks it her book)

Rine: O.K. Logo editor. (Looks away from Russ and Michael,
signalling the end of their interchange with the boys.)

The jagged Aine served as a cue to Russ and Michael, as it had. served

to Lilly and Rina, that something was wrong. But the girls'did not respond

well to the peer intervention by Russ and Michael. Rina and Lilly's

lukewarm reception of Russ and Michael's comments may be due to the fact

that (1) the boys were offering an unsolicited,negative evaluation of

their product; and (2) Lilly and Rina had just.completed the "rectangle"

part of their project and were anxious to get on with the next part of

their work.

I wondered when reviewing the tapes whether Lilly and Rina had

desisted from debugging because they were rushed, or because they were

unable to correct. I therefore looked at subsequent tapes closely and

noted evidence as late as January 29, 1988 that Lilly was not completely

in command of the 90 as input. In the January 29 teacher-assigned

across-class task requiring squares, Lilly groped for the input to LT ( LT

50, LT 19, LT 11), then suddenly cleared the screen and said sharply: "LT

90!" During the clinical interviews in Feb. 1988, and in May, 1987, I

asked Lilly and Rina about the rectangle. When asked (in Feb. 1986) what

she could have done differently in making the rectangle, Lilly was able to

state that she would have had to turn RT 90 "to make (the line) straight."
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Rine, however, in both the February. 1986. interview, and in the May 1987

interview, asserted that she did not know how she could have made "that

corner even. . . .1 don't know why that (i.e. the jagged line) happens.".

During the February 1986 (Zack, 1986) and the May 1987 interviews, it

was clear that Rina and Lilly had made progress in their understanding of

certain aspectsof angular rotation, though there were still gaps to be

filled. Rina was able to identify a right angle in different orientations

(on paper). She was able'4use it as a point' of reference when needed.

For example, in proving that'the blackboard angle must be obtuse, she

showed how it was more than 90; 14/56 students were seen .to use 90 as a

reference in this way. Rina was notableito use-an analytic (Hillel,

Kieran and Erlwanger, 1986) problem - solving approach to determine the

supplement for an angle'of 175. She stated that she "would fiddle around"

until she got where she wanted to be.. She was not able to use analytically

the classroom geometry information she knew by rote, namely that there are

180° in a straight. line. She was.alsostill, working toward consolidating

the fact that the input to RT/L1 is equal to the number. of degrees in an

angle (Zack, 1986).

Lilly was able, with prompting,...to figure out the amount of turn
. _
needed for the supplement of a 50° turn. (A total of 10/56 or 17.8% of the

students interviewed were able to use an analytic approach with prompting;

and 5%56 or 8.9% of the students were able to.do so without prompting.]

Lilly used- a method employed by three of the students who were able to use

an analytic approach. She first moved the cardboard turtle through a turn

of 90; and then, orked within the one remaieffig:quadrant, determining that

the complement of'the given angle was 40.

IMPLICATIONS FOR THE. CURRICULUM- -NOW WHAT?

The pace, may seem slow, but the learning offers a rich foundation upon

which to bUild. ForLilly and Rina, the, right angle and its' relationship

to other anglei would be a fruitful starting point, in view of the time

they spent makingsomesense`of it. The findings indicated that Rine and

Lilly, and the majority oihe'children interviewed, had not been able to

make connections beteeen Logo,vometiyxand school geometry (Zack, 1988),

nor to work analytically withfe-the Logo, environment itself; indeed, the

fact that they were "drawing" precluAed the need, to do?ao. And yet as the

project drew to a close in January, 1988, it was clear thii mijoi

obstacles lay in the way.of future progess in the .children's learning of

angle via Logo, namely: (1) the children's perception about Logo;
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(2) the time frame; and (3) WHO was going to help make the connections.

The perception of some of the children interviewed in May 1987 was that

Logo was "just drawing" (13/54, or 24%); the majority felt that they had

learnt everything there was to know, and that they had outgrown Logo by

grade.5 or 6. When asked "Do you feel that Logo can help you learn about

angles? How?", eleven out of the fifty-six children interviewed, including

Lilly, said that they never thought of angles while doing Logo. But

certainly a teacher could highlight the vital connections. The question

then is when and who. 14 was the elementary Logo teacher's (Monica's)

expectation that the high school curriculum would be the most appropriate

stage for the explicit invoking of connections., At the end of the grade 7

Logo component (again approximately 10-sessions in November to January,

1987-88, and the jest year of Logo), it was clear that Monica's

expectation was not going to be realized. The reasons were, briefly, as

follows. The computer teacher spoke of the limited time span he could

allot to Logo within the grade seven computer curriculum, he noted the

pupil-teacher ratio (1/24), and the desire to cover topics such as

"variables" and programming skills. The computer teacher (who had'also

taught the mathematics grade 7 course) overestimated what the children

knew about angles and Logo geometry. The two Grade 7 mathematics teachers

interviewed stated that they did not make any connections to Logo geometry

in their mathematics classroom; one said this was due in part to her

unawareness of what the children had learnt.

If the slow pace of the learning detected in this study reflects the

pace in many current Logo school programs, this factor may in part explain

the lrustratiJn with Logo that Watt and Watt (1987a) have reported

teachers are feeling. The Watts (1987b) have cited teachers' complaints

that "Logo isn't working" and that "students aren't learning important

mathematics and computer science through exploration and discovery." We

are in some danger, then, of throwing out the proverbial "baby with the

bath water." Findings from this study indicate that there is a need for a

more concentrated, continuous time frame for the Logo learning, a need for

an underlying but Bat restricting mathematics agenda, and a need for

teacher-elicited explicit connections to be made concerning both the

underlying structures of Logo geometry, and the relationship between Logo

geometry and school geometry, if Logo is to play the contributing role it

can play in the mathematics curriculum.
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SUBSTITUTIONS LEADING TO REASONING

Nurit Zehavi

The Weizmann Institute of Science, Israel

A software package which combines skill and, reasoning for
substitution in algebraic expressions was developed. in the
Department of Science Teaching at the Weizmann Institute. A
study based on the implementation of the software was
conducted (n=85), and' o teachers were involved in cognitive
workshops. The workshops incorporated a psychometric method
that applies an index called the Caution Index, which detects
unu'ual response patterns. The research instruments were a
test which required a combination of skill and logical
reasoning in substitution tasks, and the last program in the
software (a game). The test's results can be related and
explained by the kinds of effect of the software on various
types of student. Observation of students playing the game
and evaluating their achievement of the learning goals led to
patterns s for adaptive implementation of the software fori.

The problems and difficulties which students. have in algebra have been

the subject of much investigation (Rosnick and Clement, 1980; Matz,

1981). -According to Wheeler & Lee (1986), the algebra school currieiqum

forces pedagogy to oscillate inconsistently between presenting algebra as

a universal arithmetic and as a formal symbolic system. This affects

student conception of justification in algebra; for example, a single

numerical substitution can lead to incorrect reasoning and the

"justification" for changing an algebraic equation.

In the traditional repertoire of activities in the junior high school

algebra curriculum, the student is mainly concerned with manipulation of

expressions, word problems and solving equations and inequalities. The

introduction of microcomputers in the classroom enables the design of

novel activities which may-help to bridge the arithmetics/formal symbolic

divide. These activities fall into three main types: the learning and

practice of algebraic skills as part of a strategic environment,

algebraic tasks. involving programming, and microWorlds t6it provide

access to multiply linked representations.

Kaput (1986) believes that novel software environments will help shape

the direction of mathematics teaching and learning, if reasonable teacher

training support is given. On the other hand, he mentions (in relation

The author is grateful to Naomi TAizi and Nira Schwarzberg for their
contribution to the development of the software and to the study.
Thanks to Prof. M. Bruckheimer for his contribution to the consolidation
of the ideas presented in this paper.
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to an example of a software in algebra) that we are a long way from

understanding how to exploit this new tool pedagogically.

The Department of Science Teaching at the Weizmann Institute maintains a

curriculUm project in mathematics which integrates educational cognitive

research with the practical activities of development and implementation.

This integration applies equally to the development of software within

the curriculum project ( Zehavi et al, 1987; Zehavi, in press). In this

paper we describe a study based on the implementation of a software

package of the first type above with focus on cognitive workshops with

teachers as part of the guidance process.

The workshops incorporated a psychometric method that applies an index

called the "Caution Index ", which detects unusual response patterns and

is obtained from a student-problem curve developed in Japan by Sato (see

Tatsouka, 1984; Birenbaum, 1986). A binary data matrix is suitably

rearranged so that an unusual response pattern for either an item or a

student can easily be identified. The anomalities expressed by the

caution indices can be related and explained by the kinds of effect of

the software on various types of student.

THE SOFTWARE

The rationale in the development of .the software. is that we want to offer

activities which combine _skill and reasoning for substitution in

algebraic expressions. The activities involve one-dimensional dynamic

presentation of the role of parameters in algebraic expressions. The

software contains two tutorial units and two competitive games.

The basic task is to separate a list of increasing numbers, according to

the sign of the result of their substitution into a given expression. At

the beginning the tasks involve expressions, for which there is only one

change of sign:.

b(±z +a) or
+X a

In Figure 1 the numbers to the left. of the dividing stroke give negative.

.results when substituted in x 7 and the numbers to the right give

positive results.
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Figure 1: Substitution in x - 7.

A game for two, "Warring Expressions", offers a strategic environment

which requires mathematical logical reasoning in addition to skill-drill.

Each player gets a random list of numbers, which remains throughout the

game and an open phrase which changes at each turn (see Figure 2). The

aim of each player is to be the first one to "turn on" all the numbers in

his/her list. To achieve this, at each turn, a player can choose to

"turn on" numbers in his list that give positive results, or "turn off"

numbers that give negative results in the opponent's list.

Eu2curk ALLIArt;

litgclAckitAvos
Player A Player 8

111 -K I

Figure 2: Warring Expressions.

To illustrate the skills and reasoning which are Anvolved,...we consider

the situation in Figure 2. It is player B's turn. If (s)he chooses list

B, the diVider should be moved to the right and placed between -10 and

-7, lighting of the,numbers to the left. (If a player places the divider

incorrectly (s)he,loses the turn. This may.possibly happen here because

of difficulties in dealing with the double negative, in the list and in

the expression -9-x.) If player B chooses list A, in order to cause

his/her opponent trouble, the divider should be placed between -10 and

-5, and then the three numbers to the right' will be "turned off". Note
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that at each turn a player can (and should) consider the other player's

expression. In the example, if player B does not stop player A, the

latter can win the game in the following move.

The next tutorial unit deals with expressions which have two changes of

sign:

i44(tx + a) (x b) or ;

The following game, "The Expression Strikes Back", requires a higher

level combination of skill and reasoning. This game and its role in the

study will be described later.

THE STUDY

Three Grage 8 classes in one junior high school participated in the

study. Une of them was the experimental class and the two other classes

formed the control group. The three classes were of about the same

average ability as measured by'an achievement test administered:by the

school teachers:

Experimental class (n =28): mean score 75.7, standard deviation 13.4.

Control classes (n =57): mean score 74.6, standard deviation 14.2.

The software was presented to the expertimental class after the students

were tatight!the techniques for solving linear equations and inequalities.

They worked on the three first programs (the .first tutorial, the first

game and the second tutorial) for three lesson periods. The study was

conducted as part of an in-school. cooperative guidance system and thus

the teachers of the three classes and three student-teachers observed the

students using the software.

A test which required combination of skill and logical reasoning id

substitution tasks was given to all three classes. Student responses

were checked by the researchers and the Sato statistical method was

applied. The findings were described and discussed with the teachers in

cognitive workshops.

Test results and discussion

Student scores. for the experimental class had a correlation of 0.73 with

the school-achievement test scores. As expected higher correlation was

found for the control classes since no treatment was given.

The substitution test contains four parts. In the following we; bring the
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results for the two groups on the last two parts. An asterisk (C) is

used to indicate an item for which the caution index (CI) was found to be

larger than 0.3. This indicates the existence of an anomality in the

response pattern; that is, some low scorers on the test answered that

item correctly and some high scorers missed it.

The third part requires high level combination of skill and reasoning,

regular techniques do not help. The items were presented in ascending

order of complexity as can be seen from the results.

Group Experimental Control

Item n=28 n=57

9 86 65*

10 75 51*

11 68* 39

12 54* 11

13 50 8

14 43 0

Table 1: Results for Part III

The difference in favor of the experimental class, probably due to the

effect of the software, is very clear. We found high caution indices for

Items 9 and 10 in the control group which means that some low scorers did

not stick to techniques and reasoned correctly. Items 11 and 12 are of

interest for the experimental group.

Item 11: fxlx < 2} is the truth set for 4(x + 13) < 0.

Fill in the blank.

Item 12: (xlx (i) 3} is the truth set for -2(x + ) > 0.

Fill in the blanks.

These two items are the only ones in this part that involve an expression

of the form (x + 0 ), where the blank has to be filled by a negative

number. In the software, students had a chance to practice with

expressions of this sort and we observed difficulties. It seems that the

feedback given to some generally low achieving students caused their

awareness of such situations.

The last part deals with quadratic expressions, and the students were

also asked to generalize their answer.

For example, Item 17:
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The number -3 belongs to the truth set of (x + 6)(x + ) > 0.

Which numbers can fill the blank?

The results are given in the table.

Group Experimental Control

Item n=28 n=57

`15

16

17

18

19

20

96

86

75*

61

64"

32

81

61

39

39

37

9

Table 2: Results for Part IV

Here again we can compare the responses of the two groups and discern the

possible effects of the software. From the student-problem data matrix,

we can also detect the students who seem to benefit more than others.

Let's look at two possible solutions of Item 17: One can argue as

follows: since -3 + 6 is positive, the second factor must be positive,

and -3 + I-1 is positive for 0 > 3. Another way is to substitute -3

and obtain a numerical inequality (-3 + 6)(-3 + ) > 0, simplify to

obtain -9 +3 1:1 > 0 and. then solve for 0 The software provides

opportunities for arguments such as those in the first ablution. In

fact, 21 students out of 28 gave a correct answer using such arguments.

Some of them were low scorers on the whole test (CI=0.43). Among the 7

students who made mistakes, 2 used the second method. In the control

group 14 students (out of.57) used the second method, of which, some

solved it correctly and others made mistakes.

We notice thatItem 17 includes an expression of the type (x + 0 ) as

in, other items with anomalies in the response pattern. Item 18 was

similar but more difficult with a low caution index (0.12), it involved

an expression of the type (x - 0 ).

Creative observation-

In the cognitive workshop the teachers considered the structure of the

software in depth. They were now ready. to observe individual students

playing the second game, The Expression Strikes Back (see Figure 3). A

brief description of the game follnwa.
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Liitartuncal
Choose a rod

00C=7
2 - X

Figure 3: The Expression Strikes Back

There is one list of numbers, two dividers and an expression or the four

(a + x) (x + ), or : I Numbers are "turned on" if they give

a positive outcome when substituted in the current expression, and turned

off if the outcome is negative. The first player aims to "turn on" all

the numbers in the list and the second aims to turn them off. In Figure

3, it is the.turn of the second player, who has to choose one divider;

move it and then fill in the blank so that the dividers separate those

numbers that give a positive result when substituted in expression-froi

those which give a negative result. In this case, if the player reasons

correctly, (s)he will prefer to move divider 1 to the right of the number

-1 and write -13 in the blank. The "computer" will then turn off the,

lights, but the light above the number 3. In the design of the game we

had two intentions. To provide.opportunity to crystallize and generalize

the tasks of the first three programs, so that the learner will achieve'

the goals-of the software. At the same time, we wanted to be able to

evaluate student actions. Therefore, we designed it in such a way that

it is, in fact, free of strategic considerations (which creates "noise"

in the evaluation process). However, since the tasks and the rules are

quite complex, the game attracts students before they have gained mastery

and is thus a learning environment.

We chose six students whose achieveMent differed as measured.by. the

substitution test and who had different caution indices, thus

representing various response patterns. We asked the six teachers and

student-teachers to play the game ihdividually with the students. The

teachers were instructed to make the least move, with no explanation and

to record and assess the student's actions. Based on their observation
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they suggested patterns for effective implementation of the software

including related 'worksheets for individual students. Some of the

observation protocols and teacher suggestions will be presented in the

talk.

CONCLUDING REMARKS

There exist several attempts to use computer software in the teaching of,

investigation of algebraic expressions by using graphs of function. Such

presentation requires formal interaction of algebraic and graphical

concepts. Our experience with junior. high school algebra teaching

indicates that informal one-dimehsional presentation could serve as a

preparatory stage. This was our starting point in the development of the

software described above. TLe idea was to enhance student ability to

combine skill and reasoning.

Another aspect of the study was teacher'involvement in the evaluation and

adaptation system. A repetition of the method in some more schools will

help us to formalize diagnostic patterns for effective implementation

which will be used in the further development of fleXible adaptive

versions of the software.
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